Skip to main content

Advertisement

Log in

Improved sandwich-hybridization assay for an electrical DNA-chip-based monitoring of bioprocess-relevant marker genes

  • Methods
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recently, it was shown that electrical DNA-chips in connection with a magnetic bead-based sandwich-hybridization assay can be a suitable alternative for the analysis of gene expression by monitoring the respective mRNA levels. In this study, we established an improved assay which allowed for a significantly shortened but sensitive detection of specific mRNAs. These improvements include the change to a solution-based sandwich-hybridization and the rearrangement of the used oligonucleotide probes. The introduction of a second labeled detection probe further increased the hybridization signals and, in turn, leads to a substantial time reduction of the detection protocol. The presented solution-based sandwich-hybridization protocol for the electrochemical detection of specific mRNAs requires about 60 min and the whole procedure, including sampling, cell disruption, and RNA isolation, approx. 80 min. The assay of this study was verified by nutrient-limited growth experiments and the analysis of selected starvation marker genes of the industrial host Bacillus licheniformis. The expression profiles determined with the electrical chip and the optimized protocol were, in most cases, comparable with the profiles determined by real-time RT-PCR measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barken KB, Gabig-Ciminska M, Holmgren A, Molin S (2004) Effect of unlabeled helper probes on detection of an RNA target by bead-based sandwich hybridization. Biotechniques 36:124–132

    Article  CAS  Google Scholar 

  • Büttgenbach S, Michalzik M, Wilke R (2006) New approaches to online bioprocess monitoring. Eng Life Sci 6:449–454

    Article  Google Scholar 

  • DeLisa MP, Li J, Rao G, Weigand WA, Bentley WE (1999) Monitoring GFP-operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor. Biotechnol Bioeng 65:54–64

    Article  CAS  Google Scholar 

  • Dulieu C, Poncelet D (1999) Spectrophotometric assay of a-acetolactate decarboxylase. Enzyme MicrobTechnol 25:537–542

    Article  CAS  Google Scholar 

  • Elsholz B, Wörl R, Blohm L, Albers J, Feucht H, Grunwald T, Jürgen B, Schweder T, Hintsche R (2006) Automated detection and quantitation of bacterial RNA by using electrical microarrays. Anal Chem 78:4794–4802

    Article  CAS  Google Scholar 

  • Gabig-Ciminska M, Holmgren A, Andresen H, Barken KB, Wümpelmann M, Albers J, Hintsche R, Breitenstein A, Neubauer P, Los M, Czyz A, Wegrzyn G, Silfversparre G, Jürgen B, Schweder T, Enfors SO (2004) Electric chips for rapid detection and quantification of nucleic acids. Biosens Bioelectron 19:537–546

    Article  CAS  Google Scholar 

  • Harms P, Kostov Y, Rao G (2002) Bioprocess monitoring. Curr Opin Biotechnol 13:124–127

    Article  CAS  Google Scholar 

  • Hoi LT, Voigt B, Jürgen B, Ehrenreich A, Gottschalk G, Evers S, Feesche J, Maurer KH, Hecker M, Schweder T (2006) The phosphate-starvation response of Bacillus licheniformis. Proteomics 6:3582–3601

    Article  CAS  Google Scholar 

  • Jürgen B, Tobisch S, Wümpelmann M, Gördes D, Koch A, Thurow K, Albrecht D, Hecker M, Schweder T (2005a) Global expression profiling of Bacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources. Biotechnol Bioeng 92:277–298

    Article  Google Scholar 

  • Jürgen B, Barken KB, Tobisch S, Pioch D, Wümpelmann M, Hecker M, Schweder T (2005b) Application of an electric DNA-chip for the expression analysis of bioprocess-relevant marker genes of Bacillus subtilis. Biotechnol Bioeng 92:299–307

    Article  Google Scholar 

  • Kotler LE, Zevin-Sonkin D, Sobolev IA, Beskin AD, Ulanovsky LE (1993) DNA sequencing: modular primers assembled from a library of hexamers or pentamers. Proc Natl Acad Sci U S A 90:4241–4245

    Article  CAS  Google Scholar 

  • Kraft M, Knüpfer U, Wenderoth R, Pietschmann P, Hock B, Horn U (2007) An online monitoring system based on a synthetic sigma32-dependent tandem promoter for visualization of insoluble proteins in the cytoplasm of Escherichia coli. Appl Microbiol Biotechnol 75:397–406

    Article  CAS  Google Scholar 

  • Kyaw A, Maung-U K, Toe T (1985) Determination of inorganic phosphate with molybdate and Triton X-100 without reduction. Anal Biochem 145:230–234

    Article  CAS  Google Scholar 

  • Lane M, Paner T, Kashin I, Faldasz B, Li B, Gallo F, Benight A (1997) The thermodynamic advantage of DNA oligonucleotide ‘stacking hybridization’ reactions: energetics of a DNA nick. Nucleic Acids Res 25:611–617

    Article  CAS  Google Scholar 

  • Leskelä T, Tilsala-Timisjärvi A, Kusnetsov J, Neubauer P, Breitenstein A (2005) Sensitive genus-specific detection of Legionella by a 16S rRNA based sandwich hybridization assay. J Microbiol Methods 62:167–179

    Article  Google Scholar 

  • O’Meara D, Nilsson P, Nygren PA, Uhlén M, Lundeberg J (1998a) Capture of single-stranded DNA assisted by oligonucleotide modules. Anal Biochem 255:195–203

    Article  Google Scholar 

  • O’Meara D, Yun Z, Sönnerborg A, Lundeberg J (1998b) Cooperative oligonucleotides mediating direct capture of hepatitis C virus RNA from serum. J Clin Microbiol 36:2454–2549

    Article  Google Scholar 

  • Pioch D, Jürgen B, Evers S, Maurer K-H, Hecker M, Schweder T (2007) At-line monitoring of bioprocess-relevant marker genes. Eng Life Sci 7:373–379

    Article  CAS  Google Scholar 

  • Reischer H, Schotola I, Striedner G, Pötschacher F, Bayer K (2004) Evaluation of the GFP signal and its aptitude for novel on-line monitoring strategies of recombinant fermentation processes. J Biotechnol 108:115–125

    Article  CAS  Google Scholar 

  • Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jørgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:R77

    Article  Google Scholar 

  • Schuster K (2000) Monitoring the physiological status in bioprocesses on the cellular level. Adv Biochem Eng Biotechnol 66:185–208

    CAS  PubMed  Google Scholar 

  • Schweder T, Hecker M (2004) Monitoring of stress responses. Adv Biochem Eng Biotechnol 89:47–71

    CAS  PubMed  Google Scholar 

  • Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Bäumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211

    Article  CAS  Google Scholar 

  • Voigt B, Hoi LT, Jürgen B, Albrecht D, Ehrenreich A, Veith B, Evers S, Maurer KH, Hecker M, Schweder T (2007) The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics 7:413–423

    Article  CAS  Google Scholar 

  • Wende K, Krenn L, Unterrieder I, Lindequist U (2004) Red clover extracts stimulate differentiation of human osteoblastic osteosarcoma HOS58 cells. Planta Med 70:1003–1005

    Article  CAS  Google Scholar 

  • Westerfeld WW (1945) A colorimetric determination of blood acetoin. J Biol Chem 161:495–502

    CAS  Google Scholar 

  • Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res 34:564–574

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF: 0312707 and 0313751) and by the Ministry of Education, Science and Culture of Mecklenburg-Vorpommern (1400/0052 1401). We thank Stefanie Leja for excellent technical assistance and support during the fermentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schweder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pioch, D., Jürgen, B., Evers, S. et al. Improved sandwich-hybridization assay for an electrical DNA-chip-based monitoring of bioprocess-relevant marker genes. Appl Microbiol Biotechnol 78, 719–728 (2008). https://doi.org/10.1007/s00253-008-1347-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1347-z

Keywords

Navigation