Skip to main content
Log in

A labeling study on the formation of perillene by submerged cultured oyster mushroom, Pleurotus ostreatus

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The conversion of β-myrcene to the furanoid flavour compound perillene by Pleurotus ostreatus was investigated using trideutero β-myrcene, trideutero α-(Z)-acaridiol and non-labeled 1,2- and 3,10-epoxy-β-myrcene, α,α-acarilactol, and perillene as substrates. Myrcene diols were formed from the cleavage of myrcene epoxides, but only α-(Z)-acaridiol, a 1,4-butanediol derivative most likely generated through a base-catalysed epoxide opening, was a suitable precursor of perillene. Once formed, this key intermediate was rapidly oxidised and the resulting cyclic lactol was dehydrated to yield perillene. Bioconversion of the supplemented perillene to α,α-acariolide indicated that perillene was another intermediate of the pathway and prone to further oxidative degradation. The data suggest that the fungus converted the cytotoxic β-myrcene in its environment into a metabolically useable carbon source along this route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Başer KHC, Demirci B, Dönmez AA (2003) Composition of the essential oil Perilla frutescens (L.) britton from Turkey. Flavour Fragr J 18:122–123

    Article  Google Scholar 

  • Biernacki W, Facile A (1980) Synthesis of methyl (±)-10,11-epoxy-3,7,11-trimethyldodeca-2,6-dienoate, the insect juvenile hormone III. Pol J Chem 54:777–780

    CAS  Google Scholar 

  • Bohlmann F, Zdero C, Jakupovic J, Rourke JP (1985) cis-Guajanolide aus Osmitopsis asteriscoides. Liebigs Ann Chem 12:2342–2351

    Article  Google Scholar 

  • Busmann D, Berger RG (1994) Conversion of myrcene by submerged cultured basidiomycetes. J Biotechnol 37:39–43

    Article  CAS  Google Scholar 

  • De Vries EJ, Janssen DB (2003) Biocatalytic conversion of epoxides. Curr Opin Biotechnol 14:414–420

    Article  Google Scholar 

  • Faber K (2004) Biotransformations in organic chemistry. Springer, Berlin

    Book  Google Scholar 

  • Hua D, Ma C, Song L, Zhang Z, Deng Z, Xu P (2007) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74:783–790

    Article  CAS  Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8

    Article  CAS  Google Scholar 

  • Krings U, Hapetta D, Berger RG (2008) Bioconversion of b-myrcene to perillene by Pleurotus ostreatus. Biocatal Biotransform (in press)

  • Kuwahara Y (1990) Preparation of monoterpene derivatives as agrichemical fungicides. JP patent 02286640 A

  • Leal WS, Kuwahara Y, Nakano Y, Nakao H, Suzuki T (1989) 2(E)-(4-Methyl-3-pentyl)-butandial, α-acaridial, a novel monoterpene from the Acarid mite Tyrophagus perniciosus (Acarina, Acaridae). Agric Biol Chem 53:1193–1196

    CAS  Google Scholar 

  • Miyazawa M, Ohsawa M (2002) Biotransformation of α-terpineol by the larvae of common cutworm (Spodoptera litura). J Agric Food Chem 50:4916–4918

    Article  CAS  Google Scholar 

  • Mizoguchi A, Mori N, Nishida R, Kuwahara Y (2003) α-Acaridial a female sex pheromone from an alarm pheromone emitting mite Rhizoglyphus robini. J Chem Ecol 29:1681–1690

    Article  CAS  Google Scholar 

  • Ohloff G (1994) Scent and fragrances. Springer, Berlin, Germany

    Book  Google Scholar 

  • Ohloff G, Giersch W (1980) Stereochemistry-activity relationships in olfaction. Odorants containing a proton donor/proton acceptor unit. Helv Chim Acta 63:76–94

    Article  CAS  Google Scholar 

  • Onken J, Berger RG (1999) Effects of R-(+) limonene on submerged cultures of the terpene transforming basidiomycete Pleurotus sapidus. J Biotechnol 69:163–168

    Article  CAS  Google Scholar 

  • Pinkos R, Fischer R, Müller U (1994) Verfahren zur Herstellung von Butendiolen und Butendiol-Derivaten in Gegenwart oxidischer Katalysatoren. DE patent 4429699 A1

  • Rito-Polomares M, Negrete A, Miranda L, Flores C, Galindo E, Serrano-Carreón L (2001) The potential application of aqueous two-phase systems for in situ recovery of 6-pentyl-α-pyrone produced by Trichoderma harzianum. Enz Microb Technol 28:625–631

    Article  Google Scholar 

  • Schewe H, Pescheck M, Sell D, Schrader J (2006) Biotechnological production of terpenoid flavour and fragrance compounds in tailored bioprocesses. In: Bredie WLP, Petersen MA (eds) Flavour science. Elsevier, Amsterdam, The Netherlands, pp 45–48

    Google Scholar 

  • Schneider C (2006) Synthesis of 1,2-difunctionalised fine chemicals through catalytic, enantioselective ring-opening reactions of epoxides. Synthesis 23:3919–3944

    Article  Google Scholar 

  • Schrader J (2007) Microbial flavour production. In: Berger RG (ed) Flavour and fragrances. Springer, Berlin, pp 507–566

    Chapter  Google Scholar 

  • Schrader J, Berger RG (2001) Biotechnological production of terpenoid flavor and fragrance compounds. In: Rehm HJ (ed) Biotechnology. Wiley, Weinheim, Germany, pp 747–422 vol. 10: special processes

    Google Scholar 

  • Shimizu N, Tarui H, Mori N, Nishida R (2003) (E)-2-(2-Hydroxyethylidene)-6-methyl-5-heptenal (α-acariolal) and (E)-2-(2-hydroxyethyl)-6-methyl-2,5-heptadienal (β-acariolal), two new types of isomeric monoterpenes from Caloglyphus polyphyllae (Acari: Acaridae). Biosci Biotechnol Biochem 67:308–313

    Article  CAS  Google Scholar 

  • Smit MS (2004) Fungal epoxide hydrolases: new landmarks in sequence-activity space. Trends Biotechnol 22:123–129

    Article  CAS  Google Scholar 

  • \Steinreiber A, Faber K (2001) Microbial epoxide hydrolases for the preparative biotransformations. Curr Opin Biotechnol 12:552–558

    Article  CAS  Google Scholar 

  • Suzuki T, Haga K, Kuwahara Y (1986) Anal secretion of thrips I. Identification of perillene from Leeuwenia pasanii (Thysanoptera: Phlaeothripidae). Appl Ent Zool 21:461–466

    Article  Google Scholar 

  • Tarui H, Mori N, Ritsuo N, Okabe K, Kuwahara Y (2002) 3-(4-Methyl-3-pentenyl)-2(5H)-furanone, α,α-acariolide and 4-(4-methyl-3-pentenyl)-2(5H)-furanone, α,β-acariolide: New monoterpene lactones from the astigmatid mites, Schwiebea araujoae and Rhizoglyphus sp. (Astigmata: Acaridae). Biosci Biotechnol Biochem 66:135–140

    Article  CAS  Google Scholar 

  • Taskova RM, Zorn H, Krings U, Berger RG (2006) A comparison of cell wall disruption techniques for the isolation of intracellular metabolites from Pleurotus and Lepista sp. Z Naturforsch C 61:347–350

    Article  CAS  Google Scholar 

  • Wolken AM, ten Have R, van der Werf MJ (2000) Amino-acid-catalyzed conversion of citral: cistrans isomerization and its conversion into 6-methyl-5-hepten-2-one and acetaldehyde. J Agric Food Chem 48:5401–5405

    Article  CAS  Google Scholar 

  • Yuba A, Yazaki K, Tabata M, Honda G, Croteau R (1996) cDNA cloning, characterization and functional expression of 4S-(−)-limonene synthase from Perilla frutescens. Arch Biochem Biophys 21:280–287

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful for a grant from the Deutsche Forschungsgemeinschaft (DFG KR 2958/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Krings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krings, U., Hapetta, D. & Berger, R.G. A labeling study on the formation of perillene by submerged cultured oyster mushroom, Pleurotus ostreatus . Appl Microbiol Biotechnol 78, 533–541 (2008). https://doi.org/10.1007/s00253-007-1335-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1335-8

Keywords

Navigation