Skip to main content

Advertisement

Log in

Degradation of PCB congeners by bacterial strains

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biological in situ methods are options for the remediation of contaminated sites. An approach to quantify biodegradation by soil bacteria was developed, combining experiment with mathematical modelling. We performed in vitro assays to investigate the potential and kinetics of the wild-type degrader, Burkholderia sp. strain LB400 (expressing bph) and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180 (expressing bph under different promoters) to metabolise individual congeners of polychlorinated biphenyls (PCBs). Kinetics of metabolism was analysed using the Monod model. Results revealed similar patterns of degradable PCB congeners for LB400 and F113L::1180. The degree of PCB degradation was comparable for LB400 and F113L::1180 but was much lower for F113rifpcb. In additional mesocosm experiments with PCB-contaminated soil, the F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere. Strain F113L::1180 in combination with willow plants is expected to degrade a large spectrum of PCB congeners in soil. The data from the experiments were used to calculate the time scale of the degradation process in a PCB-contaminated soil. The uncertainty of the model predictions due to the uncertainties of experimental removal velocities and bacterial cell density in soil was quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs—a review. Crit Rev Biotechnol 10(3):241–251

    CAS  Google Scholar 

  • Albro PW, Parker CE (1979) Comparison of the compositions of Aroclor 1242 and Aroclor 1016. J Chromatogr 169:161–166

    CAS  PubMed  Google Scholar 

  • Aragno M (2005) The rhizosphere a hot spot of bacterial diversity. In: Satyanarayana T, Johri BN (eds) Microbial diversity current perspectives and potential applications. I.K. International Pvt. Ltd, New Dehli, pp 261–284

    Google Scholar 

  • Barriault D, Sylvestre M (1993) Factors affecting PCB degradation by an implanted bacterial strain in soil microcosms. Can J Microbiol 39:594–602

    CAS  PubMed  Google Scholar 

  • Bedard DL (1990) Bacterial transformation of polychlorinated biphenyls. Biodegradation 4:370–388

    Google Scholar 

  • Bedard DL, Unterman R, Bopp LH, Brennan MJ, Haberl ML, Johnson C (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol 51(4):761–768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bopp LH (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Ind Microbiol 1:23–29

    CAS  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, de Lorenzo V, Dowling DN, O’Gara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bright DA, Grundy SL, Reimer KJ (1995) Differential bioaccumulation of non-ortho-substituted and other PCB congeners in coastal arctic invertebrates and fish. Environ Sci Technol 29(10):2504–2512

    CAS  PubMed  Google Scholar 

  • Brown JF Jr (1994) Determination of PCB metabolic, excretion, and accumulation rates for use as indicators of biological response and relative risk. Environ Sci Technol 28(13):2295–2305

    CAS  PubMed  Google Scholar 

  • Cornish-Bowden A (1995) Fundamentals of enzyme kinetics. Portland Press, London, UK, p 343

    Google Scholar 

  • Criddle CS (1993) The kinetics of cometabolism. Biotechnol Bioeng 41:1048–1056

    CAS  PubMed  Google Scholar 

  • Dalton H, Stirling DI (1982) Co-metabolism. Philos T Roy Soc B 297:481–496

    CAS  Google Scholar 

  • Delany IR, Walsh UF, Ross I, Fenton AM, Corkery DM, O’Gara F (2001) Enhancing the biocontrol efficacy of Pseudomonas fluorescens F113 by altering the regulation and production of 2,4-diacetylphloroglucinol - improved pseudomonas biocontrol inoculants. Plant Soil 232:195–205

    CAS  Google Scholar 

  • Demnerova K, Mackova M, Spevakova V, Beranova K, Kochankova L, Petra Lovecka P, Ryslava E, Macek T (2005) Two approaches to biological decontamination of groundwater and soil polluted by aromatics - Characterization of microbial populations. Int Microbiol 8:205–211

    CAS  PubMed  Google Scholar 

  • Dowling DN, Pipke R, Dwyer DF (1993) A DNA module encoding bph genes for the degradation of polychlorinated biphenyls (PCBs). FEMS Microbiol Lett 113:149–154

    CAS  PubMed  Google Scholar 

  • European Commission (1996) Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for new Notified Substances and Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances. Luxembourg, Office for Official Publications of the European Communities

  • Fetter CW (1994) Applied hydrogeology, 3rd edn. Prentice-Hall Inc., Englewood Cliffs, NJ, USA, p 691

    Google Scholar 

  • Fletcher JS, Hedge RS (1995) Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31:3009–3014

    CAS  Google Scholar 

  • Frame GM, Cochran JW, Bowadt SS (1996) Complete PCB congener distributions for 17 Aroclor mixtures determined by 3 HRGC Systems optimised for comprehensive, quantitative, congener-specific analysis. J High Resol Chromatogr 19:657–668

    CAS  Google Scholar 

  • Furukawa K, Matsumura F (1976) Microbial metabolism of polychlorinated biphenyls - Studies on relative degradability of polychlorinated biphenyl components by Alcaligenes sp. J Agr Food Chem 24:251–256

    CAS  Google Scholar 

  • Gibson DT, Cruden DL, Haddock JD, Zylstra GJ, Brand JM (1993) Oxidation of polychlorinated biphenyls by Pseudomonas sp. LB400 and Pseudomonas pseudoalcaligenes KF707. J Bacteriol 175:4561–4564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh U, Weber AS, Jensen JN, Smith JR (1998) Dissolved PCB congener distribution in generator column solutions. Water Res 32:1373–1382

    CAS  Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bact Rev 36(2):146–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlson U, Uotila JS, Jacobsen CS (1995) Use of plants with inoculated microorganisms for soil cleaning (in Danish). Patent Office, Copenhagen, 25 January 1995. Pat. No. PR 173559

  • Legind CN, Karlson U, Burklen JG, Reichenberg F, Mayer P (2007) Determining chemical activity of (semi)volatile compounds by headspace solid phase microextraction. Anal Chem 79:2869–2876

    CAS  PubMed  Google Scholar 

  • Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72(4):2331–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masai E, Yamada A, Healy JM, Hatta T, Kimbara K, Fukuda M, Yano K (1995) Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. Strain RHA1. Appl Environ Microbiol 61(6):2079–2085

    CAS  PubMed  Google Scholar 

  • Mayer P, Fernqvist MM, Christensen PS, Karlson U, Trapp S (2007) Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions. Environ Sci Technol 41:6148–6155

    CAS  PubMed  Google Scholar 

  • McFarland VA, Clarke JU (1989) Environmental occurrence, abundance, and potential toxicity of PCB congeners considerations for a congener-specific analysis. Environ Health Persp 81:225–239

    CAS  Google Scholar 

  • Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils Implications for sources and environmental processes. Environ Sci Technol 37(4):667–672

    CAS  PubMed  Google Scholar 

  • Naseby DC, Lynch JM (1999) Effects of Pseudomonas fluorescens on ecological functions in the pea rhizosphere are dependent on pH. Microbiol Ecol 37:248–256

    CAS  Google Scholar 

  • Olson PE, Fletcher JS, Philp PR (2001) Natural attenuation/phytoremediation in the vadose zone of a former industrial sludge basin. Environ Sci Poll Res 4:243–249

    Google Scholar 

  • Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability. Accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25(5):1239–1245

    CAS  PubMed  Google Scholar 

  • Ryslava E, Krejcik Z, Macek T, Novakova H, Demnerova K, Mackova M (2003) Study of PCB degradation in real contaminated soil. Fresen Environ Bull 12(3):296–301

    CAS  Google Scholar 

  • Safe SH (1994) Polychlorinated-biphenyls (PCBs)-Environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87–149

    CAS  PubMed  Google Scholar 

  • Seeger M, Timmis KN, Hofer B (1995) Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Appl Environ Microbiol 61:2654–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seto M, Kimbara K, Shimura M, Hatta T, Fukuda M, Yano K (1995) A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1. Appl Environ Microbiol 61(12):4510–4513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simons M, Vanderbij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607

    CAS  PubMed  Google Scholar 

  • Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (1991) Lehrbuch der Botanik für Hochschulen, 33rd edn. Gustav Fischer, Stuttgart, p 1048

    Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soils Sed 1:37–43

    CAS  Google Scholar 

  • Trapp S, Ücisik AS, DelChicca Romano P, Larsen M (2007) The role of plants and bacteria in phytoremediation - kinetic aspects. In: Heipieper HJ (ed) Bioremediation of soils contaminated with aromatic compounds. Springer, Berlin, Germany, pp 41–49

    Google Scholar 

  • Unterman R, Bedard DL, Brennan MJ, Bopp LH, Mondello FJ, Brooks RE, Mobley DP, McDermott JB, Schwartz CC, Dietrich DK (1988) Biological approaches for polychlorinated biphenyl degradation. In: Omenn GS (ed) Environmental biotechnology reducing risks from environmental chemicals through biotechnology. Plenum Press, New York, NY, pp 253–269

    Google Scholar 

  • Villacieros M, Power B, Sanchez-Contreras M, Lloret J, Oruezabal RI, Martin M, Fernandez-Pinas F, Bonilla I, Whelan C, Dowling DN, Rivilla R (2003) Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251:47–54

    CAS  Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sanchez-Contreras M, Lloret J, Aguirre de Carcer D, Oruezabal RI, Bolanos L, Macek T, Karlson U, Dowling DN, Martin M, Rivilla R (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walton BT, Anderson TA (1990) Microbial degradation of trichloroethylene in the rhizospheres. Potential application to biological remediation of waste sites. Appl Environ Microbiol 56:1012–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been funded by the European Commission within the FP 6 Integrated Project “ALARM” (GOCE-CT-2003–506675). The PCB-contaminated soil was kindly provided by T. Macek, Czech Academy of Sciences, Prague, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Rein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rein, A., Fernqvist, M.M., Mayer, P. et al. Degradation of PCB congeners by bacterial strains. Appl Microbiol Biotechnol 77, 469–481 (2007). https://doi.org/10.1007/s00253-007-1175-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1175-6

Keywords

Navigation