Skip to main content
Log in

Membrane-bound l- and d-lactate dehydrogenase activities of a newly isolated Pseudomonas stutzeri strain

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas stutzeri SDM was newly isolated from soil, and two stereospecific NAD-independent lactate dehydrogenase (iLDH) activities were detected in membrane of the cells cultured in a medium containing dl-lactate as the sole carbon source. Neither enzyme activities was constitutive, but both of them might be induced by either enantiomer of lactate. P. stutzeri SDM preferred to utilize lactate to growth, when both l-lactate and glucose were available, and the consumption of glucose was observed only after lactate had been exhausted. The Michaelis–Menten constant for l-lactate was higher than that for d-lactate. The l-iLDH activity was more stable at 55°C, while the d-iLDH activity was lost. Both enzymes exhibited different solubilization with different detergents and different oxidation rates with different electron acceptors. Combining activity staining and previous proteomic analysis, the results suggest that there are two separate enzymes in P. stutzeri SDM, which play an important role in converting lactate to pyruvate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison N, O’Donell MJ, Hoey ME, Fewson CA (1985a) Membrane-bound lactate dehydrogenase and mandelate dehydrogenase of Acinetobacter calcoaceticus, location and regulation of expression. Biochem J 227:753–757

    Article  CAS  Google Scholar 

  • Allison N, O’Donell MJ, Hoey ME, Fewson CA (1985b) Membrane-bound lactate dehydrogenase and mandelate dehydrogenase of Acinetobacter calcoaceticus, purification and properties. Biochem J 231:407–416

    Article  CAS  Google Scholar 

  • Armstrong JM (1964) The molar extinction coefficient of 2, 6-dichlorophenol indophenol. Biochim Biophys Acta 86:194–197

    Article  CAS  Google Scholar 

  • Bhatnagar RK, Hendry AT, Shanmugam KT, Jensen RA (1989) The broad-specificity, membrane-bound lactate dehydrogenase of Neisseria gonorrhoeae: ties to aromatic metabolism. J Gen Microbiol 135:353–360

    CAS  PubMed  Google Scholar 

  • Causey TB, Shanmugam KT, Yomano LP, Ingram LO (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA 101:2235–2240

    Article  CAS  Google Scholar 

  • Chapman SK, Reid GA, Bell C, Short D, Daff S (1996) Flavocytochrome b2: an ideal model for studying protein-mediated electron transfer. Biochem Soc Trans 24:73–77

    Article  CAS  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427

    Article  CAS  Google Scholar 

  • Dong JM, Taylor JS, Latour DJ, Iuchi S, Lin EC (1993) Three overlapping lct genes involved in l-lactate utilization by Escherichia coli. J Bacteriol 175:6671–6678

    Article  CAS  Google Scholar 

  • Dym O, Pratt EA, Ho C, Eisenberg D (2000) The crystal structure of d-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc Natl Acad Sci USA 97:9413–9418

    Article  CAS  Google Scholar 

  • Erwin AL, Gotschlich EC (1993) Oxidation of d-lactate and l-lactate by Neisseria meningitidis: purification and cloning of meningococcal d-lactate dehydrogenase. J Bacteriol 175:6382–6391

    Article  CAS  Google Scholar 

  • Fewson CA, Baker DP, Chalmers RM, Keen JN, Hamilton ID, Scott AJ, Yasin M (1993) Relationships amongst some bacterial and yeast lactate and mandelate dehydrogenases. J Gen Microbiol 139:1345–1352

    Article  CAS  Google Scholar 

  • Fischer RS, Martin GC, Rao P, Jensen RA (1994) Neisseria gonorrhoeae possesses two nicotinamide adenine dinucleotide-independent lactate dehydrogenases. FEMS Microbiol Lett 115:39–44

    Article  CAS  Google Scholar 

  • Francisco D-G, James BR, Jean BH (1997) NAD-independent lactate and butyryl-CoA dehydrogenases of Clostridium acetobutylicum P262. Current Microbiology 34:162–166

    Article  Google Scholar 

  • Futai M (1973) Membrane d-lactate dehydrogenase from Escherichia coli. Purification and properties. Biochemistry 12:2468–2474

    Article  CAS  Google Scholar 

  • Futai M, Kimura H (1977) Inducible membrane-bound l-lactate dehydrogenase from Escherichia coli: purification and properties. J Biol Chem 252:5820–5827

    CAS  PubMed  Google Scholar 

  • Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 44:106–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao JR, Ma CQ, Gao C, Qiu JH, Wang M, Zhang YN, Cui X, Xu P (2007) Pseudomonas stutzeri as a novel biocatalyst for pyruvate production from dl-lactate. Biotechnol Lett 29:105–110

    Article  CAS  Google Scholar 

  • Ho C, Pratt EA, Rule GS (1989) Membrane-bound d-lactate dehydrogenase of Escherichia coli: a model for protein interactions in membranes. Biochim Biophys Acta 988:173–184

    Article  CAS  Google Scholar 

  • Horikiri S, Aizawa Y, Kai T, Amachi S, Shinoyama H, Fujii T (2004) Electron acquisition system constructed from an NAD-independent d-Lactate dehydrogenase and cytochrome c2 in Rhodopseudomonas palustris No. 7. Biosci Biotechnol Biochem 68:516–522

    Article  CAS  Google Scholar 

  • Hou WC, Liang HJ, Wang GC, Liu DZ (2004) Detection of glutathione reductase after electrophoresis on native or sodium dodecyl sulfate polyacrylamide gels. Electrophoresis 25:2926–2931

    Article  CAS  Google Scholar 

  • Jasso-Chávez R, Torres-Márquez ME, Moreno-Sánchez R (2001) The membrane-bound l- and d-lactate dehydrogenase activities in mitochondria from Euglena gracilis. Arch Biochem Biophys 390:295–303

    Article  Google Scholar 

  • Li Y, Chen J, Lun SY, Rui XS (2001a) Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl Microbiol Biotechnol 55:680–685

    Article  CAS  Google Scholar 

  • Li Y, Chen J, Lun SY (2001b) Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol 57:451–459

    Article  CAS  Google Scholar 

  • Ma CQ, Xu P, Dou YM, Qu YB (2003) Highly efficient conversion of lactate to pyruvate using whole cells of Acinetobacter sp. Biotechnol Prog 19:1672–1676

    Article  CAS  Google Scholar 

  • Ma CQ, Xu P, Qiu JH, Zhang ZJ, Wang KW, Wang M, Zhang YN (2004) An enzymatic route to produce pyruvate from lactate. Appl Microbiol Biotechnol 66:34–39

    Article  CAS  Google Scholar 

  • Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  CAS  Google Scholar 

  • Ogawa J, Soong CL, Masashi I, Shimizu S (2001) Enzymatic production of pyruvate from fumarate. An application of microbial cyclic-imide transforming pathway. J Mol Catal B Enzym 11:355–359

    Article  CAS  Google Scholar 

  • Philippe G, Frédérique L, Michiel K, Pascal H (2004) Major role of NAD-dependent lactate dehydrogenases in aerobic lactate utilization in Lactobacillus plantarum during early stationary phase. J Bacteriol 186:6661–6666

    Article  Google Scholar 

  • Seki M, Iida K-I, Saito M, Nakayama H, Yoshida S-I (2004) Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase and coupling with aerobic utilization of lactate. J Bacteriol 186:2046–2051

    Article  CAS  Google Scholar 

  • Toda A, Nishiya Y (1998) Gene cloning, purification and characterization of a lactate oxidase from Lactococcus lactis subsp.Cremoris IFO3427. J Ferment Bioeng 85:507–510

    Article  CAS  Google Scholar 

  • Yorita K, Aki K, Sagai H, Misaki H, Massey V (1995) l-Lactate oxidase and l-lactate monooxygenase: mechanistic variations on a common structural theme. Biochimie 77:631–642

    Article  Google Scholar 

  • Yorita K, Janko K, Aki K, Ghisla S, Palfey BA, Massey V (1997) On the reaction mechanism of l-lactate oxidase: quantitative structure–activity analysis of the reaction with para-substituted l-mandelates. Proc Natl Acad Sci USA 94:9590–9595

    Article  CAS  Google Scholar 

  • Yorita K, Misaki H, Palfey BA, Massey V (2000) On the interpretation of quantitative structure–function activity relationship data for lactate oxidase. Proc Natl Acad Sci USA 97:2480–2485

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant no. 39970020, 20676072). The authors also acknowledged the partially financial supports by Shanghai Apple Flavor & Fragrance Co., Ltd. and the grant from State Key Foundation of the Ministry of Education of China (Grant no. 106102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Additional information

Ma and Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, C., Gao, C., Qiu, J. et al. Membrane-bound l- and d-lactate dehydrogenase activities of a newly isolated Pseudomonas stutzeri strain. Appl Microbiol Biotechnol 77, 91–98 (2007). https://doi.org/10.1007/s00253-007-1132-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1132-4

Keywords

Navigation