Skip to main content
Log in

Novel enzyme reactions related to the tricarboxylic acid cycle: phylogenetic/functional implications and biotechnological applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The tricarboxylic acid (TCA) cycle is an energy-producing pathway for aerobic organisms. However, it is widely accepted that the phylogenetic origin of the TCA cycle is the reductive TCA cycle, which is a non-Calvin-type carbon-dioxide-fixing pathway. Most of the enzymes responsible for the oxidative and reductive TCA cycles are common to the two pathways, the difference being the direction in which the reactions operate. Because the reductive TCA cycle operates in an energetically unfavorable direction, some specific mechanisms are required for the reductive TCA-cycle-utilizing organisms. Recently, the molecular mechanism for the “citrate cleavage reaction” and the “reductive carboxylating reaction from 2-oxoglutarate to isocitrate” in Hydrogenobacter thermophilus have been demonstrated. Both of these reactions comprise two distinct consecutive reactions, each catalyzed by two novel enzymes. Sequence analyses of the newly discovered enzymes revealed phylogenetic and functional relationships between other TCA-cycle-related enzymes. The occurrence of novel enzymes involved in the citrate-cleaving reaction seems to be limited to the family Aquificaceae. In contrast, the key enzyme in the reductive carboxylation of 2-oxoglutarate appears to be more widely distributed in extant organisms. The four newly discovered enzymes have a number of potential biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acca M, Bocchetta M, Ceccarelli E, Creti R, Stetter KO, Cammarano P (1994) Updating mass and composition of archaeal and bacterial ribosomes: archaeal-like features of ribosomes from the deep-branching bacterium Aquifex pyrophilus. Syst Appl Microbiol 16:629–637

    CAS  Google Scholar 

  • Adams IP, Dack S, Dickinson M, Ratledge C (2002) The distinctiveness of ATP:citrate lyase from Aspergillus nidulans. Biochim Biophys Acta 1597:36–41

    CAS  PubMed  Google Scholar 

  • Antranikian G, Herzberg C, Gottschalk G (1982) Characterization of ATP citrate lyase from Chlorobium limicola. J Bacteriol 152:1284–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aoshima M, Igarashi Y (2006) A novel oxalosuccinate-forming enzyme involved in the reductive carboxylation of 2-oxoglutarate in Hydrogenobacter thermophilus TK-6. Mol Microbiol 62:748–759

    CAS  PubMed  Google Scholar 

  • Aoshima M, Ishii M, Igarashi Y (2004a) A novel enzyme, citryl-CoA synthetase, catalysing the first step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6. Mol Microbiol 52:751–761

    CAS  PubMed  Google Scholar 

  • Aoshima M, Ishii M, Igarashi Y (2004b) A novel enzyme, citryl-CoA lyase, catalysing the second step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6. Mol Microbiol 52:763–770

    CAS  PubMed  Google Scholar 

  • Aoshima M, Ishii M, Igarashi Y (2004c) A novel biotin protein required for reductive carboxylation of 2-oxoglutarate by isocitrate dehydrogenase in Hydrogenobacter thermophilus TK-6. Mol Microbiol 51:791–798

    CAS  PubMed  Google Scholar 

  • Beh M, Strauss G, Huber R, Stetter KO, Fuchs G (1993) Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch Microbiol 160:306–311

    CAS  Google Scholar 

  • Buckel W, Lenz H, Wunderwald P, Buschmeier V, Eggerer H, Gottschalk G (1971) Stereochemistry of the citrate-lyase reaction. Eur J Biochem 24:201–206

    CAS  PubMed  Google Scholar 

  • Buckel W, Ziegert K, Eggerer H (1973) Acetyl-CoA-dependent cleavage of citrate on inactivated citrate lyase. Eur J Biochem 37:295–304

    CAS  PubMed  Google Scholar 

  • Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–132

    CAS  PubMed  Google Scholar 

  • Elshourbagy NA, Near JC, Kmetz PJ, Sathe GM, Southan C, Strickler JE, Gross M, Young JF, Wells TNC, Groot PHE (1990) Rat ATP citrate-lyase. Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. J Biol Chem 265:1430–1435

    CAS  PubMed  Google Scholar 

  • Evans MCW, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55:928–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fatland BL, Ke J, Anderson MD, Mentzen WI, Cui LW, Allred CC, Johnston JL, Nikolau BJ, Wurtele ES (2002) Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabiodopsis. Plant Physiol 130:740–756

    PubMed  PubMed Central  Google Scholar 

  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321

    CAS  PubMed  Google Scholar 

  • House CH, Fitz-Gibbon ST (2002) Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J Mol Evol 54:539–547

    CAS  PubMed  Google Scholar 

  • Hügler M, Huber H, Stetter KO, Fuchs G (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173

    PubMed  Google Scholar 

  • Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM (2005) Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the ɛ subdivision of proteobacteria. J Bacteriol 187:3020–3027

    PubMed  PubMed Central  Google Scholar 

  • Hügler M, Huber H, Molyneaux SJ, Vetriani C, Sievert SM (2007) Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol 9:81–92

    PubMed  Google Scholar 

  • Ivanovsky RN, Sintsov NV, Kondratieva EN (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 128:239–241

    Google Scholar 

  • Kanao T, Fukui T, Atomi H, Imanaka T (2001) ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products. Eur J Biochem 268:1670–1678

    CAS  PubMed  Google Scholar 

  • Kanao T, Kawamura M, Fukui T, Atomi H, Imanaka T (2002) Characterization of isocitrate dehydrogenase from the green sulfur bacterium Chlorobium limicola. Eur J Biochem 269:1926–1931

    CAS  PubMed  Google Scholar 

  • Keech DB, Mattoo AK, Carabott MJJ, Wallace JC (1976) The ATP-dependent reductive carboxylation of 2-oxoglutarate using cytosol from rat liver. Biochem Biophys Res Commun 71:712–718

    CAS  PubMed  Google Scholar 

  • Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY, Chang KT, Park JW, Park DC, Song BJ, Veech RL, Song H, Huh TL (2004) Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem 279:39968–39974

    CAS  PubMed  Google Scholar 

  • Kurz LC, Shah S, Frieden C, Nakra T, Stein RE, Drysdale GR, Evans CT, Srere PA (1995) Catalytic strategy of citrate synthase: subunit interactions revealed as a consequence of a single amino-acid change in the oxaloacetate binding site. Biochemistry 34:13278–13288

    CAS  PubMed  Google Scholar 

  • Lenz H, Buckel W, Wunderwald P, Biedermann G, Buschmeier V, Eggerer H, Cornforth JW, Redmond JW, Mallaby R (1971) Stereochemistry of si-citrate synthase and ATP-citrate-lyase reactions. Eur J Biochem 24:207–215

    CAS  PubMed  Google Scholar 

  • Löhlein G, Eggerer H (1982) Nicotinic acid metabolism: stereochemical course of the (2R, 3S)-2,3-dimethylmalate lyase reaction. Hoppe-Seylers Z Physiol Chem 363:1103–1109

    PubMed  Google Scholar 

  • Mattoo AK, Carabott MJJ, Keech DB, Wallace JC (1976) Properties of the isocitrate synthase system from rat liver. Biochem Soc Trans 4:1058–1060

    CAS  PubMed  Google Scholar 

  • Ochoa S (1948) Biosynthesis of tricarboxylic acids by carbon dioxide fixation, III. Enzymatic mechanisms. J Biol Chem 174:133–157

    CAS  PubMed  Google Scholar 

  • Pace NR (1991) Origin of life—facing up to the physical settings. Cell 65:531–533

    CAS  PubMed  Google Scholar 

  • Pearce NJ, Yates JW, Berkhout TA, Jackson B, Tew D, Boyd H, Camilleri P, Sweeney P, Gribble AD, Shaw A, Groot PH (1998) The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem J 334:113–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross DS (2007) The viability of a nonenzymatic reductive citric acid cycle—kinetics and thermochemistry. Orig Life Evol Biosph 37:61–65

    CAS  PubMed  Google Scholar 

  • Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria, II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 148:218–225

    CAS  Google Scholar 

  • Shara M, Ohia SE, Yasmin T, Zardetto-Smith A, Kincaid A, Bagchi M, Chatterjee A, Bagchi D, Stohs SJ (2003) Dose-and time-dependent effects of a novel (−)-hydroxycitric acid extract on body weight, hepatic and testicular lipid peroxidation, DNA fragmentation and histopathological data over a period of 90 days. Mol Cell Biochem 254:339–346

    CAS  PubMed  Google Scholar 

  • Shashi K, Bachhawat AK, Joseph R (1990) ATP:citrate lyase of Rhodotorula gracilis: purification and properties. Biochim Biophys Acta 1033:23–30

    CAS  PubMed  Google Scholar 

  • Shiba H, Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1985) The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch Microbiol 141:198–203

    CAS  Google Scholar 

  • Siebert G, Carsiotis M, Plaut GWE (1957) The enzymatic properties of isocitric dehydrogenase. J Biol Chem 226:977–991

    CAS  PubMed  Google Scholar 

  • Singh M, Richards EG, Mukherjee A, Srere PA (1976) Structure of ATP citrate lyase from rat liver. J Biol Chem 251:5242–5250

    CAS  PubMed  Google Scholar 

  • Speyer JF, Dickman SR (1956) On the mechanism of action of aconitase. J Biol Chem 220:193–208

    CAS  PubMed  Google Scholar 

  • Srere PA (1961) The citrate cleavage enzyme, II. Stoichiometry substrate specificity and its use for coenzyme A assay. J Biol Chem 236:50–53

    CAS  Google Scholar 

  • Sullivan AC, Singh M, Srere PA, Glusker JP (1977) Reactivity and inhibitor potential of hydroxycitrate isomers with citrate synthase, citrate lyase, and ATP citrate lyase. J Biol Chem 252:7583–7590

    CAS  PubMed  Google Scholar 

  • Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204

    PubMed  PubMed Central  Google Scholar 

  • Williams TJ, Zhang CL, Scott JH, Bazylinski DA (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 72:1322–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderwald P, Buckel W, Lenz H, Buschmeier V, Eggerer H, Gottschalk G, Cornforth JW, Redmond JW, Mallaby R (1971) Stereochemistry of the re-citrate-synthase reaction. Eur J Biochem 24:216–221

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miho Aoshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoshima, M. Novel enzyme reactions related to the tricarboxylic acid cycle: phylogenetic/functional implications and biotechnological applications. Appl Microbiol Biotechnol 75, 249–255 (2007). https://doi.org/10.1007/s00253-007-0893-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0893-0

Keywords

Navigation