Skip to main content
Log in

A chemostat study of Streptomyces peucetius var. caesius N47

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic constants μ max over 0.10 h−1, Y XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y PX 12.99 mg g−1 and m P 1.20 mg g−1 h−1. Significant correlations were found for phosphate and glucose consumption with biomass and ɛ-rhodomycinone production. Metabolic flux analysis was conducted to estimate intracellular fluxes at different dilution rates. TCA, PPP, and shikimate pathway fluxes exhibited bigger values with production than with growth. Environmental perturbation experiments with temperature, airflow, and pH changes on a steady-state chemostat implied that an elevation of pH could be the most effective way to shift the cells from growing to producing, as the pH change induced the biggest transient increase to the calculated ɛ-rhodomycinone flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C (1969) Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng 11:1101–1110

    Article  CAS  Google Scholar 

  • Avignone Rossa C, White J, Kuiper A, Postma PW, Bibb M, Teixeira de Mattos MJ (2002) Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans. Metab Eng 4:138–150

    Article  CAS  Google Scholar 

  • Bencini D, Wild J, O’Donovan G (1983) Linear one-step assay for the determination of orthophosphate. Anal Biochem 132:254–258

    Article  CAS  Google Scholar 

  • Bergter F, Riesenberg D (1982) Morphological and biochemical properties of Streptomyces hygroscopicus grown in chemostat. Folia Microbiol 27:303–307

    Article  CAS  Google Scholar 

  • Borodina I, Schöller C, Eliasson A, Nielsen J (2005a) Metabolic network analysis of Streptomyces tenebrarius, a Streptomyces species with an active Entner–Doudoroff pathway. Appl Environ Microbiol 71:2294–2302

    Article  CAS  Google Scholar 

  • Borodina I, Krabben P, Nielsen J (2005b) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15:820–829

    Article  CAS  Google Scholar 

  • Doran P (1995) Bioprocess engineering principles. Academic, London, UK

    Google Scholar 

  • Hilliger M, Knorre A, Bergter F (1978) Erhaltungsstoffwechsel in glucoselimitierten chemostatenkulturen von Streptomyces hygroscopicus. Z Allg Mikrobiol 18:39–45

    Article  CAS  Google Scholar 

  • Hoskisson PA, Hobbs G (2005) Continuous culture—making a comeback? Microbiology 151:3153–3159

    Article  CAS  Google Scholar 

  • Hutchinson CR, Colombo AL (1999) Genetic engineering of doxorubicin production in Streptomyces peucetius: a review. J Ind Microbiol Biotechnol 23:647–652

    Article  CAS  Google Scholar 

  • Inoue S, Nishizawa Y, Nagai S (1982) Stimulation of streptomycin formation by Streptomyces griseus grown in a phosphate deficient culture. J Ferment Technol 60: 417–422

    CAS  Google Scholar 

  • James P, Edwards C, Dawson M (1991) The effects of temperature, pH and growth rate on secondary metabolism in Streptomyces thermoviolaceus grown in a chemostat. J Gen Microbiol 137:1715–1720

    Article  CAS  Google Scholar 

  • Jonsbu E, Christensen B, Nielsen J (2001) Changes of in vivo fluxes through central metabolic pathways during the production of nystatin by Streptomyces noursei in batch culture. Appl Microbiol Biotechnol 56:93–100

    Article  CAS  Google Scholar 

  • Kang SG, Lee KJ (1997) Kinetic analysis of morphological differentiation and protease production in Streptomyces albidoflavus SMF301. Microbiology 143:2709–2714

    Article  CAS  Google Scholar 

  • Kantola J, Kunnari T, Mäntsälä P, Ylihonko K (2003) Expanding the scope of aromatic polyketides by combinatorial biosynthesis. Comb Chem High Throughput Screen 6:501–512

    Article  CAS  Google Scholar 

  • Kim H, Smith C, Micklefield J, Mavituna F (2004) Metabolic flux analysis for calcium dependent antibiotic (CDA) production in Streptomyces coelicolor. Metab Eng 6:313–325

    Article  CAS  Google Scholar 

  • Kirk S, Avignone Rossa C, Bushell M (2000) Growth limiting substrate affects antibiotic production and associated metabolic fluxes in Streptomyces clavuligerus. Biotechnol Lett 22:1803–1809

    Article  CAS  Google Scholar 

  • Kiviharju K, Leisola M, Eerikäinen T (2004) Optimization of Streptomyces peucetius var. caesius N47 cultivation and ɛ-rhodomycinone production using experimental designs and response surface methods. J Ind Microbiol Biotechnol 31:475–481

    Article  CAS  Google Scholar 

  • Kretschmer S (1985) Morphogenetic behaviour of two Streptomyces strains analyzed by the use of chemostats. J Basic Microbiol 25:569–574

    Article  CAS  Google Scholar 

  • Kretschmer S (1992) Location of branches within the apical hyphal region of Streptomyces granaticolor mycelia. J Basic Microbiol 32:35–42

    Article  CAS  Google Scholar 

  • Lee SH, Lee KJ (1994) Kinetics of the repression of tylosin biosynthesis by ammonium ion in Streptomyces fradiae. J Biotechnol 32:149–156

    Article  CAS  Google Scholar 

  • Martin JF (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR–PhoP system: an unfinished story. J Bacteriol 186:5197–5201

    Article  CAS  Google Scholar 

  • Melzoch K, Teixeira de Mattos M, Jeijssel O (1997) Production of actinorhodin by Streptomyces coelicolor A3(2) grown in chemostat culture. Biotechnol Bioeng 54:577–582

    Article  CAS  Google Scholar 

  • Noack D (1986) Directed selection of differentiation mutants of Streptomyces noursei using chemostat cultivation. J Basic Microbiol 26:231–239

    Article  CAS  Google Scholar 

  • Rhodes PM (1984) The production of oxytetracycline in chemostat culture. Biotechnol Bioeng 26:382–385

    Article  CAS  Google Scholar 

  • Riesenberg D, Erdmann A, Bergter F (1979) Distribution functions of variables characterizing the mycelial morphology of Streptomyces hygroscopicus grown in glucose-limited chemostat cultures. Z Allg Mikrobiol 19:481–487

    Article  CAS  Google Scholar 

  • Roth M, Neigenfind M, Bormann EJ, Noack D (1986) Use of chemostat for selection of Streptomyces hygroscopicus mutants altered in regulation of maltose utilization. Biotechnol Lett 8:479–484

    Article  CAS  Google Scholar 

  • Roth M, Neigenfind M, Hänel F, Bormann EJ (1987) Use of chemostat for selection of Streptomyces chrysomallus mutants altered in the induction of d-glucose isomerase. Biotechnol Lett 9:855–860

    Article  CAS  Google Scholar 

  • Segura D, Santana C, Gosh R, Escalante L, Sanchez S (1997) Anthracyclines: isolation of overproducing strains by the selection and genetic recombination of putative regulatory mutants of Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 48:615–620

    Article  CAS  Google Scholar 

  • Undisz K, Noack D (1993) Autonomous selection of differentiation mutants of Streptomyces lividans TK24 in continuous culture. Biotechnol Lett 15:13–18

    Article  CAS  Google Scholar 

  • Watve M, Tickoo R, Jog M, Bhole B (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    Article  CAS  Google Scholar 

  • Weber T, Welzel K, Pelzer S, Vente A, Wohlleben W (2003) Exploiting the genetic potential of polyketide producing streptomycetes. J Biotechnol 106:221–232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Finnish Funding Agency for Technology and Innovation (TEKES) for funding, and Marjaana Rytelä and Auli Murrola for the HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiina Kiviharju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiviharju, K., Moilanen, U., Leisola, M. et al. A chemostat study of Streptomyces peucetius var. caesius N47. Appl Microbiol Biotechnol 73, 1267–1274 (2007). https://doi.org/10.1007/s00253-006-0607-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0607-z

Keywords

Navigation