Skip to main content
Log in

Targeted deletion of the uvrBA operon and biological containment in the industrially important Bacillus licheniformis

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

From a Bacillus licheniformis wild type as well as a defined asporogenous derivative, stable UV hypersensitive mutants were generated by targeted deletion of the uvrBA operon, encoding highly conserved key components of the nucleotide excision repair. Comparative studies, which included the respective parental strains, revealed no negative side effects of the deletion, neither on enzyme secretion nor on vegetative propagation. Thus, the uvrBA locus proved to be a useful deletion target for achieving biological containment in this industrially exploited bacterium. In contrast to recA mutants, which also display UV hypersensitivity, further strain development via homologous recombination techniques will be still possible in such uvr mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chang S, Cohen SN (1979) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 168:111–115

    Article  CAS  Google Scholar 

  • DelMar EG, Largman C, Brodrick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320

    Article  CAS  Google Scholar 

  • Fleming AB, Tangney M, Jorgensen PL, Diderichsen B, Priest FG (1995) Extracellular enzyme synthesis in a sporulation-deficient strain of Bacillus licheniformis. Appl Environ Microbiol 61:3775–3780

    Article  CAS  Google Scholar 

  • FitzGerald J, Vermerris W (2005) The utility of blood glucose meters in biotechnological applications. Biotechnol Appl Biochem 41:233–239

    Article  CAS  Google Scholar 

  • Gärtner D, Geissendörfer M, Hillen W (1988) Expression of Bacillus subtilisxyl operon is repressed at the level of transcription and is induced by xylose. J Bacteriol 170:3102–3109

    Article  Google Scholar 

  • Gherna R, Pienta P, Cote R (1989) American type culture collection catalog of bacteria and phages. American Type Culture Collection, Rockville

    Google Scholar 

  • Hall FF, Culp TW, Hayakawa T, Ratliff CR, Hightower NC (1970) An improved amylase assay using a new starch derivative. Am J Clin Pathol 53:627–634

    Article  CAS  Google Scholar 

  • Husain I, Houten BV, Thomas DC, Abdel-Monem M, Sancar A (1985) Effect of DNA polymerase I and DNA helicase II on the turnover rate of UvrABC excision nuclease. Proc Natl Acad Sci U S A 82:6774–6778

    Article  CAS  Google Scholar 

  • Kawamura F, Doi RH (1984) Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J Bacteriol 160:442–444

    Article  CAS  Google Scholar 

  • Lin JJ, Sancar A (1992) Active site of (A)BC excinuclease. I. Evidence for 5′ incision by UvrC trough a catalytic site involving Asp399, Asp438, Asp466, and His538 residues. J Biol Chem 267:17688–17692

    CAS  PubMed  Google Scholar 

  • Molin S, Boe L, Jensen LB, Kristensen CS, Givskov M, Ramos JL, Bej AK (1993) Suicidal genetic elements and their use in biological containment of bacteria. Annu Rev Microbiol 47:139–166

    Article  CAS  Google Scholar 

  • Nahrstedt H, Meinhardt F (2004) Structural and functional characterization of the Bacillus megateriumuvrBA locus and generation of UV-sensitive mutants. Appl Microbiol Biotechnol 65:193–199

    Article  CAS  Google Scholar 

  • Nahrstedt H, Schröder C, Meinhardt F (2005a) Evidence for two recA genes mediating DNA repair in Bacillus megaterium. Microbiology 151:775–787

    Article  CAS  Google Scholar 

  • Nahrstedt H, Waldeck J, Gröne M, Eichstädt R, Feesche J, Meinhardt F (2005b) Strain development in Bacillus licheniformis: construction of biologically contained mutants deficient in sporulation and DNA repair. J Biotechnol 119:245–254

    Article  CAS  Google Scholar 

  • Orren DK, Sancar A (1990) Formation and enzymatic properties of the UvrB DNA complex. J Biol Chem 265:15796–15803

    CAS  PubMed  Google Scholar 

  • Radman M (1975) SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci 5A:355–367

    CAS  PubMed  Google Scholar 

  • Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, Lopez de Leon A, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jorgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:R77

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  CAS  Google Scholar 

  • Sciochetti SA, Blakely GW, Piggot PJ (2001) Growth phase variation in cell and nucleoid morphology in a Bacillus subtilis recA mutant. J Bacteriol 183:2963–2968

    Article  CAS  Google Scholar 

  • Smith BT, Grossman AD, Walker GC (2001) Localization of UvrA and effect of DNA damage on the chromosome of Bacillus subtilis. J Bacteriol 184:488–493

    Article  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  Google Scholar 

  • Van Houten B (1990) Nucleotide excision repair in Escherichia coli. Microbiol Rev 53:18–51

    Google Scholar 

  • Van Houten B, Croteau DL, Della Vecchia MJ, Wang H, Kisker C (2005) ‘Close-fitting sleeves’: DNA damage recognition by the UvrABC nuclease system. Mutat Res 577:92–117

    Article  Google Scholar 

  • Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211

    Article  CAS  Google Scholar 

  • Verhoeven EEA, van Kesteren M, Moolenaar GF, Visse R, Goosen N (2000) Catalytic sites for 3′ and 5′ incision of Escherichia coli nucleotide excision repair are both located in UvrC. J Biol Chem 275:5120–5123

    Article  CAS  Google Scholar 

  • Verhoeven EEA, Wyman C, Moolenaar GF, Goosen N (2002) The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J 21:4196–4205

    Article  CAS  Google Scholar 

  • Waldeck J, Daum G, Bisping B, Meinhardt F (2006) Isolation and molecular characterization of Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl Environ Microbiol (in press)

  • Winterling KW, Chafin D, Hayes JJ, Sun J, Levine AS, Yasbin RE, Woodgate R (1998) The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol 180:2201–2211

    Article  CAS  Google Scholar 

  • Woodcock DM, Crowther PJ, Dokerty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW (1989) Quantitative evaluation of Escherichia coli host strains for tolerance of cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478

    Article  CAS  Google Scholar 

  • Xu D, Côté JC (2003) Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S-23S ITS nucleotide sequences. Int J Syst Evol Microbiol 53:695–704

    Article  CAS  Google Scholar 

  • Zou Y, Van Houten B (1999) Strand opening by the UvrA(2)B complex allows dynamic recognition of DNA damage. EMBO J 18:4889–4901

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Federal Ministry of Education and Research (BMBF, Bonn-Bad Godesberg, Germany), grant no. 0313645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Meinhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldeck, J., Meyer-Rammes, H., Nahrstedt, H. et al. Targeted deletion of the uvrBA operon and biological containment in the industrially important Bacillus licheniformis . Appl Microbiol Biotechnol 73, 1340–1347 (2007). https://doi.org/10.1007/s00253-006-0602-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0602-4

Keywords

Navigation