Skip to main content
Log in

RNAi-based tuning of cell cycling in Drosophila S2 cells—effects on recombinant protein yield

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We have demonstrated the RNA interference-based interruption of cellular controllers to increase recombinant protein yield in Drosophila Schneider 2 (S2) cell culture. Double-stranded RNA (dsRNA) was enzymatically synthesized in vitro and transfected into stable cell lines expressing green fluorescent protein (GFP) under an inducible promoter. Components of cell cycling (CycE and ago) were silenced with dsRNA homologous to a 700-nucleotide section of their respective mRNA transcripts. Silencing ago and CycE resulted in increases in product yield of up to 1.8-fold and 4-fold, respectively, relative to a control transfected with nuclease-free water. It is surprising to note that nearly complete silencing of CycE resulted in no significant change in GFP fluorescence after 24 h, and a decrease in fluorescence after 72 h. By partially silencing CycE, however, we were able to retain 80% of the cells in G1 (48-h sample) and increase GFP synthesis by fourfold. Implications for protein synthesis processing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abu-Absi NR, Srienc F (2000) Cell cycle events and cell cycle dependent processes in eukaryotic cells. In: Spier RE (ed) Encyclopedia of cell technology. Wiley-Interscience, New York, pp 320–383

    Google Scholar 

  • Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, Koch B, Haas SA, Consortium HF, Paro R, Perrimon N (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303(5659):832–835

    Article  CAS  PubMed  Google Scholar 

  • Brumby AM, Zraly CB, Horsfield JA, Secombe J, Saint R, Dingwall AK, Richardson H (2002) Drosophila Cyclin E interacts with components of the Brahma complex. EMBO J 21(13):3377–3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci USA 97(12):6499–6503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fussenegger M, Bailey JE (1998) Molecular regulation of cell-cycle progression and apoptosis in mammalian cells: implications for biotechnology. Biotechnol Prog 14(6):807–833

    Article  CAS  PubMed  Google Scholar 

  • Fussenegger M, Schlatter S, Datwyler D, Mazur X, Bailey JE (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat Biotechnol 16(5):468–472

    Article  CAS  PubMed  Google Scholar 

  • Hacker DL, Bertschinger M, Baldi L, Wurm FM (2004) Reduction of adenovirus E1A mRNA by RNAi results in enhanced recombinant protein expression in transiently transfected HEK293 cells. Gene 341:227–234

    Article  CAS  PubMed  Google Scholar 

  • Ibarra N, Watanabe S, Bi JX, Shuttleworth J, Al-Rubeai M (2003) Modulation of cell cycle for enhancement of antibody productivity in perfusion culture of NS0 cells. Biotechnol Prog 19(1):224–228

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zhang W, Wang B, Trinko R, Jiang J (2003) The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17(20):2514–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones L, Richardson H, Saint R (2000) Tissue-specific regulation of Cyclin E transcription during Drosophila melanogaster embryogenesis. Development 127(21):4619–4630

    CAS  PubMed  Google Scholar 

  • Kramer SF, Bentley WE (2003) RNA interference as a metabolic engineering tool: potential for in vivo control of protein expression in an insect larval model. Metab Eng 5(3):183–190

    Article  CAS  PubMed  Google Scholar 

  • Lee LA, Orr-Weaver TL (2003) Regulation of cell cycles in Drosophila development: intrinsic and extrinsic cues. Annu Rev Genet 37:545–578

    Article  CAS  PubMed  Google Scholar 

  • Maciorowski Z, Delic J, Padoy E, Klijanienko J, Dubray B, Cosset JM, Dumont J, Magdelenat H, Vielh P (1998) Comparative analysis of apoptosis measured by Hoechst and flow cytometry in non-Hodgkin’s lymphomas. Cytometry 32(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • March JC, Bentley WE (2004) Insulin stimulates double-stranded RNA uptake in Drosophila S2 cells. Biotechniques 37(6):890–898

    Article  Google Scholar 

  • Mazur X, Fussenegger M, Renner WA, Bailey JE (1998) Higher productivity of growth-arrested Chinese hamster ovary cells expressing the Cyclin-dependent kinase inhibitor p27. Biotechnol Prog 14(5):705–713

    Article  CAS  PubMed  Google Scholar 

  • Mazur X, Eppenberger HM, Bailey JE, Fussenegger M (1999) A novel autoregulated proliferation—controlled production process using recombinant CHO cells. Biotechnol Bioeng 65(2):144–150

    Article  CAS  PubMed  Google Scholar 

  • Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK (2001) Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413(6853):311–316

    Article  CAS  PubMed  Google Scholar 

  • Qu ZL, MacLellan WR, Weiss JN (2003a) Dynamics of the cell cycle: checkpoints, sizers, and timers. Biophys J 85(6):3600–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu ZL, Weiss JN, MacLellan WR (2003b) Regulation of the mammalian cell cycle: a model of the G(1)-to-S transition. Am J Physiol Cell Physiol 284(2):C349–C364

    Article  CAS  PubMed  Google Scholar 

  • Somasundaram K, Zhang HB, Zeng YX, Houvras Y, Peng Y, Zhang HX, Wu GS, Licht JD, Weber BL, ElDeiry WS (1997) Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21(WAF1/CiP1). Nature 389(6647):187–190

    Article  CAS  PubMed  Google Scholar 

  • Suzuki E, Ollis DF (1989) Cell-cycle model for antibody-production kinetics. Biotechnol Bioeng 34(11):1398–1402

    Article  CAS  PubMed  Google Scholar 

  • Suzuki E, Ollis DF (1990) Enhanced antibody-production at slowed growth-rates—experimental demonstration and a simple structured model. Biotechnol Prog 6(3):231–236

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Shuttleworth J, Al-Rubeai M (2002) Regulation of cell cycle and productivity in NS0 cells by the over-expression of p21(CIP1). Biotechnol Bioeng 77(1):1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to Dr. David Mosser at the University of Maryland for help with flow cytometry. This work was funded by NIH grant 1R01GM70851-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Bentley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

March, J.C., Bentley, W.E. RNAi-based tuning of cell cycling in Drosophila S2 cells—effects on recombinant protein yield. Appl Microbiol Biotechnol 73, 1128–1135 (2007). https://doi.org/10.1007/s00253-006-0560-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0560-x

Keywords

Navigation