Skip to main content
Log in

Development of a defined medium supporting rapid growth for Deinococcus radiodurans and analysis of metabolic capacities

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A morpholinepropanesulfonic acid (MOPS)-buffered rich defined medium (RDM) was optimized to support a reproducible 2.6-h doubling time at 35 °C for Deinococcus radiodurans R1 and used to gain insight into vitamin and carbon metabolism. D. radiodurans was shown to require biotin and niacin for growth in this medium. A glutamine–serine simple defined medium (SDM) was developed that supported a 4-h doubling time, and this medium was used to probe sulfur and methionine metabolism. Vitamin B12 was shown to alleviate methionine auxotrophy, and under these conditions, sulfate was used as the sole sulfur source. Phenotypic characterization of a methionine synthase deletion mutant demonstrated that the B12 alleviation of methionine auxotrophy was due to the necessity of the B12-dependent methionine synthase in methionine biosynthesis. Growth on ammonium as the sole nitrogen source in the presence of vitamin B12 was demonstrated, but it was not possible to achieve reproducibly good growth in the absence of at least one amino acid as a nitrogen source. Growth on sulfate, cysteine, and methionine as sulfur sources demonstrated the function of a complete sulfur recycling pathway in this strain. These studies have demonstrated that rapid growth of D. radiodurans R1 can be achieved in a MOPS-based medium solely containing a carbon source, salts, four vitamins, and two amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad SI, Kirk SH, Eisenstark A (1998) Thymine metabolism and thymineless death in prokaryotes and eukaryotes. Annu Rev Microbiol 52:591–625

    Article  CAS  Google Scholar 

  • Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan D (1956) Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol 10:575–578

    Google Scholar 

  • Ault-Riche D, Fraley CD, Tzeng CM, Kornberg A (1998) Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J Bacteriol 180:1841–1847

    Article  CAS  Google Scholar 

  • Bates GW, Billups C, Saltman P (1967) The kinetics and mechanism of iron (3) exchange between chelates and transferrin. II. The presentation and removal with ethylenediaminetetraacetate. J Biol Chem 242:2816–2821

    PubMed  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378

    Article  CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcusradiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  Google Scholar 

  • Brooks BW, Murray RGE (1981) Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., inluding five species. Int J Syst Bacteriol 31:353–360

    Article  Google Scholar 

  • Daly MJ (2000) Engineering radiation-resistant bacteria for environmental biotechnology. Curr Opin Biotechnol 11:280–285

    Article  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028

    Article  CAS  Google Scholar 

  • Gaillard I, Slotboom DJ, Knol J, Lolkema JS, Konings WN (1996) Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus. Biochemistry 35:6150–6156

    Article  CAS  Google Scholar 

  • Gerhardt Philipp, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC

    Google Scholar 

  • Hendrickson W (1998) Teaching an old bug new tricks. Nat Biotechnol 16:910–911

    Article  CAS  Google Scholar 

  • Jeong BC, Hawes C, Bonthrone KM, Macaskie LE (1997). Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme. Microbiology 143(Pt 7):2497–2507

    Article  CAS  Google Scholar 

  • Lange CC, Wackett LP, Minton KW, Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16:929–933

    Article  CAS  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146(Pt 8):1855–1867

    Article  CAS  Google Scholar 

  • Meima R, Lidstrom ME (2000) Characterization of the minimal replicon of a cryptic Deinococcus radiodurans SARK plasmid and development of versatile Escherichia coliD. radiodurans shuttle vectors. Appl Environ Microbiol 66:3856–3867

    Article  CAS  Google Scholar 

  • Meima R, Rothfuss HM, Gewin L, Lidstrom ME (2001) Promoter cloning in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 183:3169–3175

    Article  CAS  Google Scholar 

  • Miller JH (1982) Experiments in molecular biology. Cold Spring Harbor Laboratory

  • Min B, Pelaschier JT, Graham DE, Tumbula-Hansen D, Soll D (2002) Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation. Proc Natl Acad Sci USA 99:2678–2683

    Article  CAS  Google Scholar 

  • Molina F, Jimenez-Sanchez A, Guzman EC (1998) Determining the optimal thymidine concentration for growing Thy-Escherichia coli strains. J Bacteriol 180:2992–2994

    Article  CAS  Google Scholar 

  • Murray RGE (1992) The deinococci. In: Ballows MDHGTA, Hader W, Schleifer K (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • National Research Council (1996) Glass as a waste form and vitrification technology: summary of an international workshop: National Academy, Washington, District of Columbia

  • Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119:736–747

    Article  CAS  Google Scholar 

  • Ogawa N, Tzeng CM, Fraley CD, Kornberg A (2000) Inorganic polyphosphate in Vibrio cholerae: genetic, biochemical, and physiologic features. J Bacteriol 182:6687–6693

    Article  CAS  Google Scholar 

  • Raj HD, Duryee FL, Deeney AM, Wang CH, Anderson AW, Elliker PR (1960) Utilization of carbohydrates and amino acids by Micrococcus radiodurans. Can J Microbiol 6:289–298

    Article  CAS  Google Scholar 

  • Renninger N, Knopp R, Nitsche H, Clark DS, Keasling JD (2004) Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70:7404–7412

    Article  CAS  Google Scholar 

  • Rothfuss HM (2004) Genetic engineering of Deinococcus radiodurans R1 for bioremediation of mixed waste. In: Chemical engineering. University of Washington, Seattle

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schmid AK, Lidstrom ME (2002) Involvement of two putative alternative sigma factors in stress response of the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 184:6182–6189

    Article  CAS  Google Scholar 

  • Sekowska A, Kung HF, Danchin A (2000) Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2:145–177

    PubMed  CAS  Google Scholar 

  • Shapiro A, DiLello D, Loudis MC, Keller DE, Hutner SH (1977) Minimal requirements in defined media for improved growth of some radio-resistant pink tetracocci. Appl Environ Microbiol 33:1129–1133

    Article  CAS  Google Scholar 

  • Soupene E, He L, Yan D, Kustu S (1998) Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci USA 95:7030–7034

    Article  CAS  Google Scholar 

  • Venkateswaran A, McFarlan SC, Ghosal D, Minton KW, Vasilenko A, Makarova K, Wackett LP, Daly MJ (2000) Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl Environ Microbiol 66:2620–2626

    Article  CAS  Google Scholar 

  • White O, Eisen JA, Heidelberg JF (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Doug Pitera, Gregory Morin, and Natalia Korotkova for helpful discussions, Marina Kalyuzhnaya and Ludmila Chistoserdova for helpful comments on the manuscript. This work was supported by grants from the DOE EMSP program (ER20294), and the NSF Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Lidstrom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, A.D., Rothfuss, H.M. & Lidstrom, M.E. Development of a defined medium supporting rapid growth for Deinococcus radiodurans and analysis of metabolic capacities. Appl Microbiol Biotechnol 72, 1074–1082 (2006). https://doi.org/10.1007/s00253-006-0399-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0399-1

Keywords

Navigation