Skip to main content
Log in

Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The glyA gene encoding a serine hydroxymethyl transferase (SHMT) with threonine aldolase activity was isolated from Streptococcus thermophilus YKA-184 chromosomal DNA. This aldolase is a pyridoxal 5′-phosphate-dependent enzyme that stereospecifically catalyzes the interconversion of l-threonine to glycine and acetaldehyde. The enzyme was overexpressed in Escherichia coli M15 as a recombinant protein of 45 kDa with a His6-tag at its N-terminus. The recombinant enzyme was purified to homogeneity by a single chromatographic step using Ni-nitrilotriacetic acid affinity, obtaining a high activity-recovery yield (83%). Lyophilized and precipitated enzymes were stable at least for 10 weeks when stored at −20°C and 4°C. It was observed that the K m for l-allo-threonine was 38-fold higher than that for l-threonine, suggesting this enzyme can be classified as a specific l-allo-threonine aldolase. The optimum pH range of threonine aldolase activity for the recombinant SHMT was pH 6–7. When tested for aldol addition reactions with non-natural aldehydes, such as benzyloxyacetaldehyde and (R)-N-Cbz-alaninal, two possible β-hydroxy-α-amino acid diastereoisomers were produced, but with moderate stereospecificity. The enzyme showed potential as a biocatalyst for the stereoselective synthesis of β-hydroxy-α-amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich D, Kulakauskas S, Lapidus A, Glotsman E, Mazur M, Pusch G, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558

    Article  PubMed  CAS  Google Scholar 

  • Chavez ACSD, Fernandez M, Lerayer ALS, Mierau I, Kleerebezem M, Hugenholtz J (2002) Metabolic engineering of acetaldehyde production by Steptococcus thermophilus. Appl Environ Microbiol 68:5656–5662

    Article  PubMed  CAS  Google Scholar 

  • Espelt L, Clapés P, Esquena J, Manich A, Solans C (2003) Enzymatic carbon–carbon bond formation in water-in-oil highly concentrated (gel emulsions). Langmuir 19:1337–1346

    Article  CAS  Google Scholar 

  • Gijsen H, Qiao L, Fitz W, Wong CH (1996) Recent advances in chemoenzymatic synthesis of carbohydrates and carbohydrates mimetics. Chem Rev 96:443–473

    Article  PubMed  CAS  Google Scholar 

  • Kataoka M, Ikemi M, Morikawa T, Miyoshi T, Nishi K, Wada M, Yamada H, Shimizy S (1997a) Isolation and characterization of d-threonine aldolase, a pyridoxal-5′-phosphate-dependent enzyme from Arthrobacter sp. DK-38. Eur J Biochem 248:385–393

    Article  PubMed  CAS  Google Scholar 

  • Kataoka M, Wada M, Nishi K, Yamada H, Shimizu S (1997b) Purification and characterization of l-allo-threonine aldolase from Aeromonas jandaei DK-39. FEMS Microbiol Lett 151:245–248

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Vassilev VP, Shen GJ, Wong CH (1997) Enzymatic synthesis of beta-hydroxy-alpha-aminoacids based on recombinant d- and l-threonine aldolases. J Am Chem Soc 119:11734–11742

    Article  CAS  Google Scholar 

  • Liu JQ, Nagata S, Dairi T, Misono H, Shimizu S, Yamada H (1997) The GLY1 gene of Saccharomyces cerevisiae encodes a low-specific l-threonine aldolase that catalyses cleavage of l-allo-threonine and l-threonine to glycine. Expression of the gene in Escherichia coli and purification and characterization of the enzyme. Eur J Biochem 245:289–293

    Article  PubMed  CAS  Google Scholar 

  • Liu JQ, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (1998a) Gene cloning of a thermostable low-specificity l-threonine aldolase from Escherichia coli. Eur J Biochem 255:220–226

    Article  PubMed  CAS  Google Scholar 

  • Liu JQ, Ito S, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (1998b) Gene cloning, nucleotide sequencing and purification and characterization of the low-specificity l-threonine aldolase from Pseudomonas sp. strain NCIMB 10558. Appl Environ Microbiol 64:549–554

    PubMed  CAS  Google Scholar 

  • Liu JQ, Ito S, Dairi T, Itoh N, Shimizu S, Yamada H (1998c) Low-specificity l-threonine aldolase of Pseudomonas sp. NCIMB 10558: purification, characterization and its application to β-hydroxy-α-aminoacids synthesis. Appl Microbiol Biotechnol 49:702–708

    Article  CAS  Google Scholar 

  • Liu JQ, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (2000a). Diversity of microbial threonine aldolases and their application. J Mol Catal B Enzym 10:107–115

    Article  CAS  Google Scholar 

  • Liu JQ, Odani M, Yasuoka T, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (2000b) Gene cloning and overproduction of low-specificity d-threonine aldolase from Alcaligenes xylosoxidans and its application for production of a key intermediate for Parkinson drug. Appl Microbiol Biotechnol 54:44–51

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Fujioka M (1981) Purification and characterization of cytosolic and mitochondrial serine hydroxymethyltransferases from rat liver. J Biochem 90:381–390

    PubMed  CAS  Google Scholar 

  • Ogawa H, Gomi T, Fujioka M (2000) Serine hydroxymethyltransferase and threonine aldolase: are they identical? Int J Biochem Cell Biol 32:289–301

    Article  PubMed  CAS  Google Scholar 

  • Plamann MD, Stauffer GV (1983) Characterization of the Escherichia coli gene for serine hydroxymethyltransferase. Gene 22:9–18

    Article  PubMed  CAS  Google Scholar 

  • Plamann MD, Stauffer LT, Urbanowsky ML, Stauffer GV (1983) Complete nucleotide sequence of the Escherichia coli glyA gene. Nucleic Acids Res 11:2065–2075

    Article  PubMed  CAS  Google Scholar 

  • Saeed A, Young DW (1992) Synthesis of l-beta-hydroxy amino acids using serine hydroxymethyltransferase. Tetrahedron 48:2507–2514

    Article  CAS  Google Scholar 

  • Sambrook J, Maniatis T, Fritsch EF (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schirch LG, Mason M (1962) Serine transhydroxymethylase. Spectral properties of the enzyme-bound pyridoxal-5-phosphate. J Biol Chem 237:2578–2581

    CAS  Google Scholar 

  • Schirch V, Hopkins S, Villar E, Angelaccio S (1985) Serine hydroxymethyltransferase from Escherichia coli: purification and properties. J Bacteriol 163:1–7

    PubMed  CAS  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino residues in proteins. Amino Acids 25:207–218

    Article  PubMed  CAS  Google Scholar 

  • Usha R, Savithri HS, Rao NA (1994) The primary structure of sheep liver cytosolic serine hydroxymethyl transferase and analysis of the evolutionary relationships among serine hydroxymethyl transferases. Biochim Biophys Acta 1204:75–83

    PubMed  CAS  Google Scholar 

  • Viaplana E, Villaverde A (1996) Polylinker-encoded peptides can confer toxicity to recombinant proteins produced in Escherichia coli. Biotechnol Prog 12:723–727

    Article  PubMed  CAS  Google Scholar 

  • Vidal L, Durany O, Suau T, Ferrer P, Benaiges MD, Caminal G (2003) High-level production of recombinant His-tagged rhamnulose 1-phosphate aldolase in Escherichia coli. J Chem Technol Biotechnol 78:1171–1179

    Article  CAS  Google Scholar 

  • Wilkins DW, Schmidt RH, Kennedy L (1986) Threonine aldolase activity in yogurt bacteria as determined by headspace gas chromatography. J Agric Food Chem 34:150–152

    Article  CAS  Google Scholar 

  • Xanthopoulos V, Petridis D, Tzanetakis N (2001) Characterization and classification of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus strains isolated from traditional Greek yogurts. J Food Sci 66:747–752

    Article  CAS  Google Scholar 

  • Yadav JS, Chandrasekhar S, Ravindra Reddy Y, Rama Rao AV (1995) Synthesis of (2S,3R)-3-hydroxy leucine: a constituent of lysobactin. Tetrahedron 51:2749–2754

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support from CICYT (project PPQ 2002-04625-C02-01). The Department of Chemical Engineering is the Unit of Biochemical Engineering of the Centre de Referència en Biotecnologia de la Generalitat de Catalunya (CeRBa). We thank Dr. Tzanetakis (Aristotle University of Thessaloniki, Greece) for providing us with the S. thermophilus YKA-184 strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Caminal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, L., Calveras, J., Clapés, P. et al. Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst. Appl Microbiol Biotechnol 68, 489–497 (2005). https://doi.org/10.1007/s00253-005-1934-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1934-1

Keywords

Navigation