Skip to main content
Log in

Isolation of dipicolinic acid as an insecticidal toxin from Paecilomyces fumosoroseus

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Several entomopathogenic fungi produce toxins that could be used as bioinsecticides in integrated pest management programs. Paecilomyces fumosoroseus is currently used for the biological control of the whiteflies Bemisia tabaci and B. argentifolii. Supernatants from submerged batch culture, where the fungus produced abundant dispersed mycelium, conidia and blastospores, were toxic to the whitefly nymphs. The most abundant metabolite was purified by HPLC and identified by mass spectrometry and NMR as dipicolinic acid. Both the dipicolinic acid produced by the fungus and the chemically synthesized compound had insecticidal activity against third-instar nymphs of the insect. Dipicolinic acid was toxic to the whitefly nymphs in bioassays involving topical applications. In submerged culture, the specific growth rate of P. fumosoroseus was 0.054 h−1, the specific glucose consumption rate was 0.1195 g g−1 h−1 and the specific dipicolinic acid production rate was 0.00012 g g−1 h−1. Dipicolinic acid was detected after 24 h when the fungus started growing; and dipicolinic acid production was directly correlated with fungal growth. Nevertheless, the yield was low and the maximal concentration was only 0.041 g l−1. The maximal concentrations of conidia and blastospores (per milliliter) were 1.4×108 and 7×107, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bernardini M, Carilli A, Pacioni G, Santurbano B (1975) Isolation of beauvericin from Paecilomyces fumosoroseus. Phytochemistry 14:1865

    Article  CAS  Google Scholar 

  • Claydon N, Grove J (1982) Insecticidal secondary metabolitic products from the entomogenous fungus Verticilliun lecanii. J Invertebr Pathol 40:413–418

    Article  CAS  Google Scholar 

  • Dowd PF (1999) Relative inhibition of insect phenoloxidase by cyclic fungal metabolites from insect and plant pathogens. Nat Toxins 7:337–341

    Article  PubMed  CAS  Google Scholar 

  • Fargues J, Maniania N, Delmas J, Smits N (1992) Influence of temperature on the in vitro growth of entomopathogenic hyphomycetes. Agronomie 12:557–556

    Article  Google Scholar 

  • Fornelli F, Minervini F, Logrieco A (2004) Cytotoxicity of fungal metabolites to lepidopteran (Spodoptera frugiperda) cell line (SF-9). J Invertebr Pathol 85:74–79

    Article  PubMed  CAS  Google Scholar 

  • Gatto M, Muratori S, Rinaldi S (1988) A functional interpretation of the logistic equation. Ecol Model 42:155–159

    Article  Google Scholar 

  • Gentschev P, Moller N, Krebs B (2000) New functional models for catechol oxidases. Inorg Chim Acta 300–302:442–452

    Article  Google Scholar 

  • Grove JF, Pople M (1980) The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia 70:103–105

    Article  Google Scholar 

  • Gupta S, Krasnoff SB, Underwood NL, Renwick JAA, Roberts DW (1991) Isolation of beauvericin as an insect toxin form Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathologia 115:185–189

    Article  PubMed  CAS  Google Scholar 

  • Hamill RL, Higgens CE, Boaz HE, Gorman M (1969) The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett 49:4255–4258

    Article  CAS  Google Scholar 

  • Hartl M, Humpf HU (2000) Toxicity assessment of fumonisins using the brine shrimp (Artemia salina) bioassay. Food Chem Toxicol 38:1097–1102

    Article  PubMed  CAS  Google Scholar 

  • Hauska G, Hurt E, Gabellini N, Lockau W (1983) Comparative aspects of quinol-cytochrome c/plastocyanin oxidoreductases. Biochim Biophys Acta 726:97–133

    PubMed  CAS  Google Scholar 

  • Hunt JB, Ginsburg A (1981) Manganese ion interactions with glutamine synthase from Escherichia coli: kinetic and equilibrium studies with xylenol orange and pyridine-2,6-dicarboxilyc acid. Biochemistry 20:2226–2233

    Article  PubMed  CAS  Google Scholar 

  • Jegorov A, Sedmera P, Matha V, Simek P, Zahradnickova H, Landa Z, Eyal J (1994) Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Phytochemistry 37:1301–1303

    Article  PubMed  CAS  Google Scholar 

  • Kidani Y, Hirose J, Koike H (1976) Coordination chemical studies on metalloenzymes. J Biochem 79:43–51

    PubMed  CAS  Google Scholar 

  • Lacey A, Kirk A, Millar L, Mercadier G, Vidal C (1999) Ovicidal and larvicidal of conidia and blastospores of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomicetes) against Bemisia argentifolii (Homoptera: Aleyrodidae) with a description of a bioassay system allowing prolonged survival of control insects. Biocontrol Sci Technol 9:9–18

    Article  Google Scholar 

  • Luedeking R, Piret EL (1959) A kinetics study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393–412

    Article  CAS  Google Scholar 

  • Mollier P, Lagnel J, Fournet B, Aïoun A, Riba G (1994) A Glycoprotein highly toxic for Galleria melonela larvae secreted by the entomopathogenic fungus Beauveria sulfurecens. J Invertebr Pathol 64:200–207

    Article  CAS  Google Scholar 

  • Murrell WG (1961) Spore formation and germination as microbial reaction to the environment. In: Meyner GG, Goodyear H (eds) Microbial reaction to environment. Cambridge University Press, New York, pp 100–150

    Google Scholar 

  • Osborne LS, Storey GK, McCoy CW, Walter JF (1990) Potential for controlling the sweet potato whitefly, Bemisia tabaci, with the fungus, Paecilomyces fumosoroseus. Proc Int Colloq Invertebr Pathol Microb Control 5:386

    Google Scholar 

  • Osuna-Paez G, Estrada-Ramírez F, Caro-Macías P, Galván-Piña B, Cárdenas-Cota H (2003) Virulencia de Paecilomyces fumosoroseus (Wize) Brown & Smith contra ninfas de Bemisia (Gennadius) spp. en un cultivo de berenjena (Solanum melongena L.). Rev Mex Fitopatol 21:292–299

    Google Scholar 

  • Oyama J (1961) Biosynthesis of dipicolinic acid by molds. II. Dipicolinic acid producers. Rept Ferment Res Inst 20:95–103, 105–112

    Google Scholar 

  • Oyama J, Nakamura N, Tanabe O (1961) Biosynthesis of dipicolinic acid by molds. I. Isolation and indentification of dipicolinic acid from the culture filtration of a Penicillium sp. Rep Ferment Res Inst 19:5–81

    Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation, 1st edn. Blackwell, London

    Google Scholar 

  • Pocker Y, Fong C (1980) Kinetics of inactivation of erythrocyte carbonic anhydrase by sodium 2,6-piridinedicarboxilate. Biochemistry 19:2045–2050

    Article  PubMed  CAS  Google Scholar 

  • Quiot MJ, Vey A, Vago C (1985) Effects of mycotoxins on invertebrate cells in vitro. Adv Cell Cult 4:199–212

    CAS  Google Scholar 

  • Roberts D (1981) Toxins of entomopathogenic fungi. In: Burges HD (ed) Microbial control of pests and diseases 1970–1980. Academic Press, New York, pp 441–464

    Google Scholar 

  • Shima M (1955) On the metabolic products of the silkworm muscardines. Bull Sericult Exp Stat 14:427–449

    CAS  Google Scholar 

  • Vey A, Quiot JM, Mazet I, McCoy CW (1993) Toxicity and pathology of crude broth filtrate produced by Hirsutella thompsonii var. thompsonii in shake culture. J Invetebr Pathol 61:131–137

    Article  CAS  Google Scholar 

  • Vidal C, Lacey L, Fargues J (1997) Pathogenicity of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomicetes) against Bemisia argentifolii (Homoptera: Aleyrodidae) with a description of a bioassay method. J Econ Entomol 90:765–772

    Google Scholar 

  • Vidal C, Fargues J, Lacey LA, Jackson MA (1998) Effect of various liquid culture media on morphology, growth, propagule production, and pathogenic activity to Bemisia argentifolii of the entomopathogenic hyphomicete, Paecilomyces fumosoroseus. Mycopathologia 143:33–46

    Article  CAS  Google Scholar 

  • Wraight S, Carruthers R, Bradley C, Jaronski S, Lacey L, Wood P, Galaini-Wraight S (1998) Pathogenicity of the entomopathogenic fungi Paecilomyces spp and Beauveria bassiana against the silverleaf whitefly, Bemisia argentifolii. J Invertebr Pathol 71:217–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from CONACyT (No. 38522-B) to M.T. We thank Dr. Hector Cardenas-Cota for his technical assistance during the bioassays and his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayra de la Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asaff, A., Cerda-García-Rojas, C. & de la Torre, M. Isolation of dipicolinic acid as an insecticidal toxin from Paecilomyces fumosoroseus . Appl Microbiol Biotechnol 68, 542–547 (2005). https://doi.org/10.1007/s00253-005-1909-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1909-2

Keywords

Navigation