Skip to main content

Advertisement

Log in

Biosynthesis of radiolabeled cellodextrins by the Clostridium thermocellum cellobiose and cellodextrin phosphorylases for measurement of intracellular sugars

  • Methods
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Clostridium thermocellum cellobiose and cellodextrin phosphorylases (glucosyl transferases) in the cell extract were used to synthesize radiolabeled cellodextrins with a degree of polymerization (DP=2–6) from nonradioactive glucose-1-phosphate and radioactive glucose. Chain lengths of synthesized cellodextrin were controlled by the absence or presence of dithiothreitol and by reaction conditions. All cellodextrins have the sole radioactive glucose unit located at the reducing ends. Mixed cellodextrins (G2–G6) were separated efficiently by size-exclusion chromatography or less efficiently by thin-layer chromatography. A new rapid sampling device was developed using disposable syringes containing an ultracold methanol-quenching buffer. It was simple, less costly, and especially convenient for anaerobic fermentation. After an impulse feed of radiolabeled cellobiose, the intracellular sugar levels were measured after a series of operations—sampling, extracting, concentrating, separating, and reading. Results showed that the largest amount of radioactivity was cellobiose with lesser amounts of glucose, cellotriose, and cellotetraose, and an average DP of intracellular cellodextrins was ca. 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander JK (1972a) Cellobiose phosphorylase from Clostridium thermocellum. Methods Enzymol 130:944–948

    Article  Google Scholar 

  • Alexander JK (1972b) Cellodextrin phosphorylase from Clostridium thermocellum. Methods Enzymol 130:948–953

    Article  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  Google Scholar 

  • Buziol S, Bashir I, Baumeister A, Claassen W, Noisommit-Rizzi N, Mailinger W, Reuss M (2002) New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnol Bioeng 80(6):632–636

    Article  CAS  Google Scholar 

  • Crout DH, Vic G (1998) Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr Opin Chem Biol 2:98–111

    Article  CAS  Google Scholar 

  • Elferink MGL, Albers S-V, Konings WN, Driessen AJM (2001) Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol Microbiol 39:1494–1503

    Article  CAS  Google Scholar 

  • Gonzalez B, Francois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13:1347–1356

    Article  CAS  Google Scholar 

  • Hausler RE, Fischer KL, Flugge U-I (2000) Determination of low-abundant metabolites in plant extracts by NAD(P)H fluorescence with a microtiter plate reader. Anal Biochem 281:1–8

    Article  CAS  Google Scholar 

  • Koivula A, Ruohonen L, Wohlfahrt G, Reinikainen T, Teeri TT, Piens K, Claeyssens M, Weber M, Vasella A, Becker D et al (2002) The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. J Am Chem Soc 124:10015–10024

    Article  CAS  Google Scholar 

  • Koning SM, Elferink MGL, Konings WN, Driessen AJM (2001) Cellobiose uptake in the hyperthermophilic Archaeon Pyrococcus furiosus is mediated by an inducible, high-affinity ABC transporter. J Bacteriol 183:4979–4984

    Article  CAS  Google Scholar 

  • Lange HC, Eman M, van Zuijlen G, Visser D, van Dam JC, Frank J, de Mattos MJ, Heijnen JJ (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75:406–415

    Article  CAS  Google Scholar 

  • Lee SY, Lee D-Y, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358

    Article  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  Google Scholar 

  • Mashego MR, van Gulik WM, Vinke JL, Heijnen JJ (2003) Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae. Biotechnol Bioeng 83:395–399

    Article  CAS  Google Scholar 

  • Ng TK, Zeikus JG (1986) Synthesis of [14C] cellobiose with Clostridium thermocellum: cellobiose phosphorylase. Appl Environ Microbiol 52:902–904

    Article  CAS  Google Scholar 

  • Oliver DJ, Nikolau B, Wurtele ES (2002) Functional genomics: high-throughput mRNA, protein, and metabolite analyses. Metab Eng 4:98–106

    Article  CAS  Google Scholar 

  • Pereira AN, Mobedshahi M, Ladisch MR (1988) Preparation of cellodextrins. Methods Enzymol 160:26–43

    Article  CAS  Google Scholar 

  • Perugino G, Trincone A, Rossi M, Moracci M (2004) Oligosaccharide synthesis by glycosynthases. Trends Biotechnol 22:31–37

    Article  CAS  Google Scholar 

  • Schmid G, Bisell M, Wandrey C (1988) Preparation of cellodextrins and isolation of oligomeric side components and their characterization. Anal Biochem 175:573–583

    Article  CAS  Google Scholar 

  • Shi Y, Weimer PJ (1996) Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria. Appl Environ Microbiol 62:1084–1088

    Article  CAS  Google Scholar 

  • Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239

    Article  CAS  Google Scholar 

  • Spiridonov NA, Wilson DB (1998) Regulation of biosynthesis of individual cellulases in Thermomonospora fusca. J Bacteriol 180:3549–3552

    Article  Google Scholar 

  • Strobel HJ, Caldwell FC, Dawson KA (1995) Carbohydrate transport by the anaerobic thermophilic Clostridium thermocellum LQRI. Appl Environ Microbiol 61:4012–4015

    Article  CAS  Google Scholar 

  • Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol Bioeng 55:305–316

    Article  CAS  Google Scholar 

  • Visser D, van Zuylen GA, van Dam JC, Oudshoorn A, Eman MR, Ras C, van Gulik WM, Frank J, van Dedem GW, Heijnen JJ (2002) Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. Biotechnol Bioeng 79(6):674–681

    Article  CAS  Google Scholar 

  • Zhang Y-H, Lynd LR (2003a) Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an ELISA-based method with application to Clostridium thermocellum batch cultures. Anal Chem 75:219–227

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Lynd LR (2003b) Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal Biochem 322:225–232

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Lynd LR (2004a) Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Appl Environ Microbiol 70:1563–1569

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Lynd LR (2004b) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Lynd LR (2005a) Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol 187:99–106

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Lynd LR (2005b) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6:1510–1515

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Lynd LR (2005c) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A 102:7321–7325

    Article  CAS  Google Scholar 

  • Zverlov VV, Schantz N, Schwarz WH (2005) A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose. FEMS Microbiol Lett 249(2):353–358

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author (YHPZ) thanks the Biological Systems Engineering Department at Virginia Polytechnic Institute and State University. This work was also supported partially by grants DE-FG02-02ER15350 (to LRL and YHPZ) from the Department of Energy and 60NANB1D0064 (to LRL) from the National Institute of Standards and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. -H. P. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y.H.P., Lynd, L.R. Biosynthesis of radiolabeled cellodextrins by the Clostridium thermocellum cellobiose and cellodextrin phosphorylases for measurement of intracellular sugars. Appl Microbiol Biotechnol 70, 123–129 (2006). https://doi.org/10.1007/s00253-005-0278-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0278-1

Keywords

Navigation