Skip to main content
Log in

Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide–lactoferricin fusion gene. The monomeric acidic peptide–lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-β-d-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera O, Ostolaza H, Quiros LM, Fierro JF (1999) Permeabilizing action of an antimicrobial lactoferricin-derived peptide on bacterial and artificial membranes. FEBS Lett 462(3):273–277

    CAS  PubMed  Google Scholar 

  • Ahn T, Kim H (1996) Differential effect of precursor ribose binding protein of Escherichia coli and its signal peptide on the SecA penetration of lipid bilayer. J Biol Chem 271:12372–12379

    CAS  PubMed  Google Scholar 

  • Andersons D, Engstrom A, Josephson S, Hansson L, Steiner H (1991) Biologically active and amidated cecropin produced in a baculovirus expression system from a fusion construct containing the antibody-binding part of protein A. Biochem J 280(1):219–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JH, Jenssen H, Gutteberg TJ (2003) Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir. Antiviral Res 58(3):209–215

    CAS  PubMed  Google Scholar 

  • Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M (1992) Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1121(1–2):130–136

    CAS  PubMed  Google Scholar 

  • Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73(6):472–479

    CAS  PubMed  Google Scholar 

  • Bellamy W, Wakabayashi H, Takase M, Kawase K, Shimamura S, Tomita M (1993) Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med Microbiol Immunol (Berl) 182(2):97–105

    CAS  Google Scholar 

  • Callaway JE, Lai J, Haselbeck B, Baltaian M, Bonnesen SP, Weickmann J, Wilcox G, Lei SP (1993) Modification of the C terminus of cecropin is essential for broad-spectrum antimicrobial activity. Antimicrob Agents Chemother 37(8):1614–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevrier-Miller M, Jacques N, Raibaud O, Dreyfus M (1990) Transcription of single-copy hybrid lacZ genes by T7 RNA polymerase in Escherichia coli: mRNA synthesis and degradation can be uncoupled from translation. Nucleic Acids Res 18(19):5787–5792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diarra MS, Petitclerc D, Lacasse P (2002) Effect of lactoferrin in combination with penicillin on the morphology and the physiology of Staphylococcus aureus isolated from bovine mastitis. J Dairy Sci 85(5):1141–1149

    CAS  PubMed  Google Scholar 

  • Dionysius DA, Milne JM (1997) Antibacterial peptides of bovine lactoferrin: purification and characterization. J Dairy Sci 80(4):667–674

    CAS  PubMed  Google Scholar 

  • Gigova L, Wishart P, Uscheva A, Ivanova M, Bardarov S, Jay E, Ivanov I (1989) Expression of repetitive human calcitonin genes in Escherichia coli. Biotechnol Appl Biochem 11(4):401–412

    CAS  PubMed  Google Scholar 

  • Goodman RE, Schanbacher FL (1991) Bovine lactoferrin mRNA: sequence, analysis, and expression in the mammary gland. Biochem Biophys Res Commun 180(1):75–84

    CAS  PubMed  Google Scholar 

  • Hara S, Yamakawa M (1996) Production in Escherichia of moricin, a novel type antibacterial peptide from the silkworm, Bombyx mori. Biochem Biophys Res Commun 220(3):664–669

    CAS  PubMed  Google Scholar 

  • Haversen L, Ohlsson BG, Hahn-Zoric M, Hanson LA, Mattsby-Baltzer I (2002) Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol 220(2):83–95

    CAS  PubMed  Google Scholar 

  • Heller WT, Waring AJ, Lehrer RI, Harroun TA, Weiss TM, Yang L, Huang HW (2000) Membrane thinning effect of the beta-sheet antimicrobial protegrin. Biochemistry 39(1):139–145

    CAS  PubMed  Google Scholar 

  • Ingham AB, Sproat KW, Tizard ML, Moore RJ (2005) A versatile system for the expression of nonmodified bacteriocins in Escherichia coli. J Appl Microbiol 98(3):676–683

    CAS  PubMed  Google Scholar 

  • Iost I, Dreyfus M (1995) The stability of Escherichia colilacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J 14(13):3252–3261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isamida T, Tanaka T, Omata Y, Yamaguchi K, Shimazaki K, Saito A (1998) Protective effect of lactoferricin against Toxoplasma gondii infection in mice. J Vet Med Sci 60(2):241–244

    CAS  PubMed  Google Scholar 

  • Koczulla AR, Bals R (2003) Antimicrobial peptides: current status and therapeutic potential. Drugs 63(4):389–406

    CAS  PubMed  Google Scholar 

  • Laemnli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 27:680–685

    Google Scholar 

  • LaVallie ER, McCoy JM (1995) Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol 6(5):501–506

    CAS  PubMed  Google Scholar 

  • Lee JH, Hong SS, Kim SC (1998) Expression of an antimicrobial peptide magainin by a promotor inversion system. J Microbiol Biotechnol 8(1):34–41

    CAS  Google Scholar 

  • Lee JH, Minn I, Park CB, Kim SC (1998) Acidic peptide-mediated expression of the antimicrobial peptide buforin II as tandem repeats in Escherichia coli. Protein Expr Purif 12:53–60

    CAS  PubMed  Google Scholar 

  • Lee JH, Kim MS, Cho JH, Kim SC (2002) Enhanced expression of tandem multimers of the antimicrobial peptide buforin II in Escherichia coli by the DEAD-box protein and trxB mutant. Appl Microbiol Biotechnol 58(6):790–796

    CAS  PubMed  Google Scholar 

  • Matsuzaki K, Sugishita K, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37(34):11856–11863

    CAS  PubMed  Google Scholar 

  • Marassi FM, Opella SJ, Juvvadi P, Merrifield RB (1999) Orientation of cecropin A helices in phospholipid bilayers determined by solid-state NMR spectroscopy. Biophys J 77(6):3152–3155

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCann KB, Lee A, Wan J, Roginski H, Coventry MJ (2003) The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures. J Appl Microbiol 95(5):1026–1033

    CAS  PubMed  Google Scholar 

  • Miller KW, Evans RJ, Eisenberg SP, Thompson RC (1989) Secretory leukocyte protease inhibitor binding to mRNA and DNA as a possible cause of toxicity to Escherichia coli. J Bacteriol 171:2166–2172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park CJ, Lee JH, Hong SS, Lee HS, Kim SC (1998) High-level expression of the angiotensin-converting-enzyme-inhibiting peptide, YG-1, as tandem multimers in Escherichia coli. Appl Microbiol Biotechnol 50(1):71–76

    CAS  PubMed  Google Scholar 

  • Piers KL, Brown MH, Hancock RE (1993) Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria. Gene 134(1):7–13

    CAS  PubMed  Google Scholar 

  • Rao XC, Li S, Hu JC, Jin XL, Hu XM, Huang JJ, Chen ZJ, Zhu JM, Hu FQ (2004) A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli. Protein Expr Purif 36(1):11–18

    CAS  PubMed  Google Scholar 

  • Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schagger H, von Jagow G (1987) Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range of 1 to 100 kDa. Anal Biochem 166:368–397

    CAS  PubMed  Google Scholar 

  • Schibli DJ, Hwang PM, Vogel HJ (1999) The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. FEBS Lett 446(2–3):213–217

    CAS  PubMed  Google Scholar 

  • Sharma A, Khoury-Christianson AM, White SP, Dhanjal NK, Huang W, Paulhiac C, Friedman EJ, Manjula BN, Kumar R (1994) High-efficiency synthesis of human alpha-endorphin and magainin in the erythrocytes of transgenic mice: a production system for therapeutic peptides. Proc Natl Acad Sci USA 91(20):9337–9341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin K, Yamauchi K, Teraguchi S, Hayasawa H, Tomita M, Otsuka Y, Yamazaki S (1998) Antibacterial activity of bovine lactoferrin and its peptides against enterohaemorrhagic Escherichia coli O157:H7. Lett Appl Microbiol 26(6):407–411

    CAS  PubMed  Google Scholar 

  • Swart PJ, Kuipers EM, Smit C, Van Der Strate BW, Harmsen MC, Meijer DK (1998) Lactoferrin. Antiviral activity of lactoferrin. Adv Exp Med Biol 443:205–213

    CAS  PubMed  Google Scholar 

  • Ulvatne H, Haukland HH, Olsvik O, Vorland LH (2001) Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. FEBS Lett 492(1–2):62–65

    CAS  PubMed  Google Scholar 

  • Ulvatne H, Samuelsen O, Haukland HH, Kramer M, Vorland LH (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237(2):377–384

    CAS  PubMed  Google Scholar 

  • Vaskovsky VE, Kostetsky EY, Vasendin IM (1975) A universal reagent for phospholipid analysis. J Chromatogr 114(1):129–141

    CAS  PubMed  Google Scholar 

  • Vorland LH, Ulvatne H, Andersen J, Haukland HH, Rekdal O, Svendsen JS, Gutteberg TJ (1999) Antibacterial effects of lactoferricin B. Scand J Infect Dis 31(2):179–184

    CAS  PubMed  Google Scholar 

  • Wakabayashi H, Abe S, Teraguchi S, Hayasawa H, Yamaguchi H (1998) Inhibition of hyphal growth of azole-resistant strains of Candida albicans by triazole antifungal agents in the presence of lactoferrin-related compounds. Antimicrob Agents Chemother 42(7):1587–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi H, Matsumoto H, Hashimoto K, Teraguchi S, Takase M, Hayasawa H (1999) Inhibition of iron/ascorbate-induced lipid peroxidation by an N-terminal peptide of bovine lactoferrin and its acylated derivatives. Biosci Biotechnol Biochem 63(5):955–957

    CAS  PubMed  Google Scholar 

  • Wakabayashi H, Teraguchi S, Tamura Y (2002) Increased Staphylococcus-killing activity of an antimicrobial peptide, lactoferricin B, with minocycline and monoacylglycerol. Biosci Biotechnol Biochem 66(10):2161–2167

    CAS  PubMed  Google Scholar 

  • Xu Z, Wang F, Peng L, Fang X, Cen P (2005) Expression of human beta-defensin-2 with multiple joined genes in Escherichia coli. Appl Biochem Biotechnol 120(1):1–13

    CAS  PubMed  Google Scholar 

  • Yoo YC, Watanabe S, Watanabe R, Hata K, Shimazaki K, Azuma I (1998) Bovine lactoferrin and Lactoferricin inhibit tumor metastasis in mice. Adv Exp Med Biol 443:285–291

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Kyung Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HK., Chun, DS., Kim, JS. et al. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli . Appl Microbiol Biotechnol 72, 330–338 (2006). https://doi.org/10.1007/s00253-005-0266-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0266-5

Keywords

Navigation