Skip to main content
Log in

Molecular cloning of the gene encoding β-1,3(4)-glucanase A from a marine bacterium, Pseudomonas sp. PE2, an essential enzyme for the degradation of Pythium porphyrae cell walls

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstrfsact

The β-1,3(4)-glucanase A (GluA)-encoding gene named gluA was cloned from the genomic library of a marine bacterium Pseudomonas sp. PE2 by expression in Escherichia coli, and the complete DNA sequence was determined. The recombinant enzyme from Pseudomonas sp. PE2 was examined to determine the essential enzymes for degrading Pythium porphyrae cell walls, comparatively using other two recombinant enzymes, chitinase A and β-1,3-glucanase B from the same bacterial strain. GluA most degraded the cell walls among these three enzymes, suggesting that GluA seems to be most important to P. porphyrae cell-wall-degrading activity. The deduced GluA is a modular enzyme composed of an N-terminal signal peptide, the tandem-duplicated carbohydrate-binding module family 6 (CBMGluA-1 and CBMGluA-2), and a glycoside hydrolase family 16 catalytic domain. Deletion analysis clearly indicated that GluA lacking CBMGluA-1 and CBMGluA-2 does not bind to Avicel and xylan. These results suggest that the tandem-repeated CBM of GluA may play a key role in the binding of Avicel and xylan as well as β-1,3- and β-1,3;1,4-glucans and is very important to bind to insoluble polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aoki Y (2002) Master’s thesis, Saga University, pp 107–121 (in Japanese)

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108

    Article  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Brogli R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  Google Scholar 

  • Cabib E, Roberts R, Bowers B (1982) Synthesis of the yeast cell wall and its regulation. Annu Rev Biochem 51:763–793

    Article  CAS  Google Scholar 

  • Chesters CGC, Bull AT (1963) The enzymatic degradation of laminarin. I The distribution of laminarinases amongst microorganisms. Biochem J 86:28–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper BA, Aronson JM (1967) Cell wall structure of Pythium debaryanum. Mycologia 59:658–670

    Article  CAS  Google Scholar 

  • Ferrer P, Hedegaard L, Halkier T, Diers I, Savva D, Asenjo JA (1996) Molecular cloning of a lytic beta-1,3-glucanase gene from Oerskovia xanthineolytica LLG109. A beta-1,3-glucanase able to selectively permeabilize the yeast cell wall. Ann N Y Acad Sci 782:555–565

    Article  CAS  Google Scholar 

  • Fontes CMGA, Clarke JH, Hazlewood GP, Fernandes TH, Gilbert HJ, Ferreira LMA (1998) Identification of tandemly repeated type VI cellulose-binding domains in an endoglucanase from the aerobic soil bacterium Cellvibrio mixtus. Appl Microbiol Biotechnol 49:552–559

    Article  CAS  Google Scholar 

  • Hahn M, Olsen O, Politz O, Borriss R, Heinemann U (1995) Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3-1,4-β-glucanase. J Biol Chem 270:3081–3088

    Article  CAS  Google Scholar 

  • Hartland RP, Vermeulen CA, Klis FM, Sietsma JH, Wessels JG (1994) The linkage of (1-3)-beta-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast 10:591–599

    Article  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    Article  CAS  Google Scholar 

  • Imoto T, Yagishita K (1971) A simple activity measurement of lysozyme. Agric Biol Chem 35:1154–1156

    Article  CAS  Google Scholar 

  • Inglis GD, Kawchuk LM (2002) Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol 48:60–70

    Article  CAS  Google Scholar 

  • Jach G, Germhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Mass C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  CAS  Google Scholar 

  • Kitamura E, Kamei Y (2003) Molecular cloning, sequencing and expression of the gene encoding a novel chitinase A from a marine bacterium, Pseudomonas sp. PE2 and its domain structure. Appl Microbiol Biotechnol 61:140–149

    Article  CAS  Google Scholar 

  • Kitamura E, Myouga H, Kamei Y (2002) Polysaccharolytic activities of bacterial enzymes which degrade the cell walls of Pythium porphyrae, a causative fungus of red rot disease in Porphyra yezoensis. Fish Sci 68:436–445

    Article  CAS  Google Scholar 

  • Kollar R, Petrakova E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall. J Biol Chem 270:1170–1178

    Article  CAS  Google Scholar 

  • Krah M, Misselwitz R, Politz O, Thomsen KK, Welfle H, Borriss R (1998) The laminarinase from thermophilic eubacterium Rhodothermus marinus—conformation, stability, and identification of active site carboxylic residues by site-directed mutagenesis. Eur J Biochem 257:101–111

    Article  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  CAS  Google Scholar 

  • Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood DA (1996) A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96

    Article  CAS  Google Scholar 

  • Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353

    Article  CAS  Google Scholar 

  • Sakka K, Takada G, Karita S, Ohmiya K (1996) Identification and characterization of cellulose-binding domains in xylanase A of Clostridum stercorarium. Ann N Y Acad Sci 782:241–251

    Article  CAS  Google Scholar 

  • Seki N, Muta T, Oda T, Iwaki D, Kuma K, Miyata T, Iwanaga S (1994) Horseshoe crab (1,3)-β-d-glucan-sensitive coagulation factor G. J Biol Chem 269:1370–1374

    CAS  PubMed  Google Scholar 

  • Shine J, Dalgarno L (1975) Determination of cistron specificity in bacterial ribosomes. Nature 254:34–38

    Article  CAS  Google Scholar 

  • Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akutsu K (1998) Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinetea). Plant Cell Rep 17:159–164

    Article  CAS  Google Scholar 

  • Voorhorst WG, Eggen RI, Luesink EJ, De Vos WM (1995) Characterization of the celB gene coding for beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli. J Bacteriol 177:7105–7111

    Article  CAS  Google Scholar 

  • Yamada H, Imoto T (1981). A convenient synthesis of glycol chitin, a substrate of lysozyme. Carbohydr Res 92:160–162

    Article  CAS  Google Scholar 

  • Yamamoto M, Ezure T, Watanabe T, Tanaka H, Aono R (1998) C-terminal domain of β-1,3-glucanase H in Bacillus circulans IAM1165 has a role in biding to insoluble β-1,3-glucan. FEBS Lett 443:41–43

    Article  Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Biotechnology (N Y) 12:807–812

    CAS  Google Scholar 

  • Zverlov VV, Volkov IY, Velikodvorskaya TV, Schwarz WH (1997) Highly thermostable endo-1,3-beta-glucanase (laminarinase) LamA from Thermotoga neapolitana: nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology 143:1701–1708

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by grant 13660186 from the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuto Kamei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, E., Kamei, Y. Molecular cloning of the gene encoding β-1,3(4)-glucanase A from a marine bacterium, Pseudomonas sp. PE2, an essential enzyme for the degradation of Pythium porphyrae cell walls. Appl Microbiol Biotechnol 71, 630–637 (2006). https://doi.org/10.1007/s00253-005-0200-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0200-x

Keywords

Navigation