Skip to main content
Log in

Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In a culture medium of Streptomyces caeruleus MTCC 6638 grown with p-coumaric acid (5 mM) as the sole source of carbon, co-production of caffeic acid and p-hydroxybenzoic acid was observed. Both caffeic acid and p-hydroxybenzoic acid are important phenolic compounds with pharmaceutical importance. These biotransformed products were identified by high-performance liquid chromatography and electrospray ionization mass spectrometry. Obtained data suggest that p-coumaric acid was possibly utilized by two different routes, resulting in the formation of a hydroxycinnamate and a hydroxybenzoate compound. However, higher concentration of p-coumaric acid (10 mM) favoured caffeic acid formation. Addition of 5 mM p-coumaric acid into S. caeruleus cultures pre-grown on minimal medium with 1.0 g/l glucose resulted in the production of 65 mg/l caffeic acid. Furthermore, S. caeruleus cells were able to produce the maximum amount of caffeic acid when pre-grown on nutrient broth for 16 h. Under this condition, the addition of 5 mM p-coumaric acid was sufficient for the S. caeruleus culture to produce 150 mg/l caffeic acid, with a molar yield of 16.6% after 96 h of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd El-Mawla AMA, Beerhues L (2002) Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum. Planta 214:727–733

    Article  CAS  PubMed  Google Scholar 

  • Barghini P, Montebove F, Ruzzi M, Schiesser A (1998) Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells. Appl Microbiol Biotechnol 49:309–314

    Article  CAS  Google Scholar 

  • Bode HB, Müller R (2003) Possibility of bacterial recruitment of plant genes associated with the biosynthesis of secondary metabolites. Plant Physiol 132:1153–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Brunati M, Marinelli F, Bertolini C, Gandolfi R, Daffonchio D, Molinari F (2004) Biotransformation of cinnamic and ferulic acid with actinomycetes. Enzyme Microb Technol 34:3–9

    Article  CAS  Google Scholar 

  • Dey G, Sachan A, Ghosh S, Mitra A (2003) Detection of major phenolic acids from dried mesocarpic husk of mature coconut by thin layer chromatography. Ind Crops Prod 18:171–176

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1:171–178

    Article  Google Scholar 

  • Estrada Alvarado I, Lomascolo A, Navarro D, Delattre M, Asther M, Lesage-Meessen L (2001) Evidence of a new biotransformation pathway of p-coumaric acid into p-hydroxybenzaldehyde in Pycnoporus cinnabarinus. Appl Microbiol Biotechnol 57:725–730

    Article  CAS  PubMed  Google Scholar 

  • Estrada Alvarado I, Navarro D, Record E, Asther M, Asther M, Lesage-Meessen L (2003) Fungal biotransformation of p-coumaric acid into caffeic acid by Pycnoporus cinnabarinus: an alternative for producing a strong natural antioxidant. World J Microbiol Biotechnol 19:157–160

    Article  CAS  Google Scholar 

  • Ghosh S, Sachan A, Mitra A (2005) Degradation of ferulic acid by a white-rot fungus Schizophyllum commune. World J Microbiol Biotechnol 21:385–388

    Article  CAS  Google Scholar 

  • Hartley RD, Harris PJ (1981) Phenolic constituents of the cell walls of dicotyledons. Biochem Syst Ecol 9:189–203

    Article  CAS  Google Scholar 

  • Hartmann T, Kutchan TM, Strack D (2005) Evolution of metabolic diversity. Phytochemistry 66:1198–1199

    Article  CAS  PubMed  Google Scholar 

  • Henderson MEK (1961) The metabolism of aromatic compounds related to lignin by some hyphomycetes and yeast-like fungi of soil. J Gen Microbiol 26:155–165

    Article  CAS  PubMed  Google Scholar 

  • Hertweck C, Moore BS (2000) A plant-like biosynthesis of benzoyl CoA in the marine bacterium ‘Streptomyces maritimus’. Tetrahedron 56:9115–9120

    Article  CAS  Google Scholar 

  • Hertweck C, Jarvis AP, Xiang L, Moore BS, Oldham NJ (2001) A mechanism of benzoic acid biosynthesis in plants and bacteria that mirrors fatty acid β-oxidation. Chembiochem 10:784–786

    Article  Google Scholar 

  • Löscher R, Heide L (1994) Biosynthesis of p-hydroxybenzoate from p-coumaric acid and p-coumaryl-coenzyme a in cell-free extracts of Lithospermum erythrorhizon cell cultures. Plant Physiol 106:271–279

    Article  PubMed  PubMed Central  Google Scholar 

  • MacAdam JW, Grabber JH (2002) Relationship of growth cessation with the formation of diferulic acid cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215:783–793

    Article  Google Scholar 

  • McQualter RB, Chong BF, Meyer K, Van Dyk DE, O’Shea MG, Walton NJ, Viitanen PV, Brumbley SM (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3:29–41

    Article  CAS  PubMed  Google Scholar 

  • Michaluart P, Masferrer JL, Carothers AM, Subbaramaiah K, Zweifel BS, Koboldt C, Mestre JR, Grunberger D, Sacks PG, Tanabe T, Dannenberg AJ (1999) Inhibitory effect of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cell and in rat model of inflammation. Cancer Res 59:2347–2352

    CAS  PubMed  Google Scholar 

  • Mitra A, Kitamura YJ, Gasson MJ, Narbad A, Parr A, Payne J, Rhodes MJC, Sewter C, Walton NJ (1999) 4-Hydroxycinnamoyl-CoA-hydratase/lyase (HCHL)—an enzyme of phenylpropanoid chain cleavage from Pseudomonas. Arch Biochem Biophys 365:10–16

    Article  CAS  PubMed  Google Scholar 

  • Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51:456–461

    Article  CAS  Google Scholar 

  • Nambudiri AMD, Subba Rao PV, Bhat JV (1969) Metabolism of p-coumaric acid by Streptomyces—formation of caffeic acid as intermediate. Curr Sci 38:402

    CAS  Google Scholar 

  • Nambudiri AMD, Bhat JV, Subba Rao PV (1972) Conversion of p-coumaric acid into caffeic acid by Streptomyces nigrifaciens: purification and properties of the hydroxylating enzyme. Biochem J 130:425–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nardini M, D’Aquino M, Tomassi G, Gentili V, Felice MD, Scaccini C (1995) Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic Biol Med 19:541–552

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria—a rare event. FEMS Microbiol Rev 22:79–103

    Article  CAS  PubMed  Google Scholar 

  • Podstolski A, Havkin-Frenkel D, Malinowski J, Blount JW, Kourteva G, Dixon RA (2002) Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia. Phytochemistry 61:611–620

    Article  CAS  PubMed  Google Scholar 

  • Rosazza JPN, Huang Z, Dostal L, Volm T, Rousseau B (1995) Biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol 15:457–471

    Article  CAS  PubMed  Google Scholar 

  • Sachan A, Ghosh S, Mitra A (2004) An efficient isocratic separation of hydroxycinnamic acids and their corresponding benzoates from microbial and plant sources by HPLC. Biotechnol Appl Biochem 40:197–200

    Article  CAS  PubMed  Google Scholar 

  • Sachan A, Ghosh S, Mitra A (2005) Biotransformation of p-coumaric acid by Paecilomyces variotii. Lett Appl Microbiol (in press)

  • Sato M (1966) Metabolism of phenolic substances by the chloroplasts II. conversion by the isolated chloroplasts of p-coumaric acid to caffeic acid. Phytochemistry 5:385–389

    Article  CAS  Google Scholar 

  • Schnitzler J, Madlung J, Rose A, Seitz HU (1992) Biosynthesis of p-hydroxybenzoic acid in elicitor-treated carrot cell cultures. Planta 188:594–600

    Article  CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods of characterization of Streptomyces. Int J Syst Bacteriol 61:313–340

    Article  Google Scholar 

  • Sutherland JB, Crawford DJ, Pometto AL III (1983) Metabolism of cinnamic, p-coumaric and ferulic acids by Streptomyces setonii. Can J Microbiol 29:1253–1257

    Article  CAS  PubMed  Google Scholar 

  • Tomas-Barberan FA, Clifford MN (2000) Dietary hydroxybenzoic acid derivatives—nature, occurrence and dietary burden. J Sci Food Agric 80:1024–1032

    Article  CAS  Google Scholar 

  • Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63:505–515

    Article  CAS  PubMed  Google Scholar 

  • Wu R-Y, Chen M-H (1995) Identification of Streptomyces strain KS3-5. Bot Bull Acad Sin 36:201–205

    CAS  Google Scholar 

  • Xiang LK, Moore BS (2002) Inactivation, complementation and heterologous expression of encP, a novel bacterial phenyalanine ammonia-lyase gene. J Biol Chem 277:32505–32509

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a ‘Career Award for Young Teachers’ (no. 1-51/FD/CA/(001)/2003–2004; to A. Mitra) from the All India Council for Technical Education, India, and in part by a multi-institutional research grant (no. BT/PR/2516/PID/24/120/2001; to A. Mitra and S.K. Sen) from the Department of Biotechnology (DBT), Ministry of Science and Technology, India. A. Sachan acknowledges the Indian Institute of Technology Kharagpur for an institute research scholarship award. S. Ghosh was funded by DBT in the form of a senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinpunya Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachan, A., Ghosh, S., Sen, S.K. et al. Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638. Appl Microbiol Biotechnol 71, 720–727 (2006). https://doi.org/10.1007/s00253-005-0197-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0197-1

Keywords

Navigation