Skip to main content
Log in

Secreted β-galactosidase from a Flavobacterium sp. isolated from a low-temperature environment

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The bacterial strain Flavobacterium sp. 4214 isolated from Greenland was found to express β-galactosidase (EC 3.2.1.23) at temperatures below 25°C. A chromosomal library of Flavobacterium sp. 4214 was constructed in Escherichia coli, and the gene gal4214-1 encoding a β-galactosidase of 1,046 amino acids (114.3 kDa) belonging to glycosyl hydrolase family 2 was isolated. This was the only gene encoding β-galactosidase activity that was identified in the chromosomal library. Expression levels in both Flavobacterium sp. 4214 and in initial recombinant E. coli strains were insufficient for biochemical characterization. However, a combination of T7 promoter expression and introduction of an E. coli host that complemented rare transfer RNA genes yielded 15 mg of β-galactosidase per liter of culture. Gal4214-1-His protein was found to be active in monomeric conformation. The protein was secreted from the cytoplasm, probably through an N-terminal signaling sequence. The Gal4214-1-His protein was found to have optimum activity at a temperature of 42°C, but with short-term stability at temperatures above 25°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207

    Article  PubMed  CAS  Google Scholar 

  • Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482

    Article  PubMed  CAS  Google Scholar 

  • Coombs JM, Brenchley JE (1999) Biochemical and phylogenetic analyses of a cold-active β-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Appl Environ Microbiol 65:5443–5450

    PubMed  CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  CAS  Google Scholar 

  • Fernandes S, Geueke B, Delgado O, Coleman J, Hatti-Kaul R (2002) β-Galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 58:313–321

    Article  PubMed  CAS  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Artic sea ice, Spitzbergen. Extremophiles 8:475–488

    Article  PubMed  CAS  Google Scholar 

  • Gutshall K, Trimbur DE, Kasmir JJ, Brenchley JE (1995) Analysis of a novel gene and β-galactosidase isozyme from a psychrotrophic Arthrobacter isolate. J Bacteriol 177:1981–1988

    PubMed  CAS  Google Scholar 

  • Gutshall KR, Wang K, Brenchley JE (1997) A novel Arthrobacter β-galactosidase with homology to eucaryotic β-galactosidase. J Bacteriol 179:3064–3067

    PubMed  CAS  Google Scholar 

  • Hoyoux A, Jennes J, Dubois P, Genicot S, Dubail F, Francois JM, Baise E, Feller G, Gerday C (2001) Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Humphry DR, George A, Black GW, Cummings SP (2001) Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243

    PubMed  CAS  Google Scholar 

  • Hung M-N, Lee BH (2002) Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Appl Microbiol Biotechnol 58:439–445

    Article  PubMed  CAS  Google Scholar 

  • Juers DH, Huber RE, Matthews BW (1999) Structural comparisons of TIM barrel proteins suggest functional and evolutionary relationship between β-galactosidase and other glycohydrolases. Protein Sci 8:122–136

    Article  PubMed  CAS  Google Scholar 

  • Juers DH, Jacobson RH, Wigley D, Zhang X-J, Huber RE, Tronrud DE, Matthews BW (2000) High resolution refinement of β-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for β-complementation. Protein Sci 9:1685–1699

    Article  PubMed  CAS  Google Scholar 

  • Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG, Matthews BW (2001) A structural view of the action of Escherichia coli (lacZ) β-galactosidase. Biochemistry 40:14781–14794

    Article  PubMed  CAS  Google Scholar 

  • Keith KJ, Morrison JF (1982) Buffers of constant ionic strength for studying pH-dependent processes. In: Purich DL (ed) Methods in enzymology, vol 87. Academic, London, pp 405–426

    Google Scholar 

  • Kim CS, Ji E-S, Oh D-K (2003) Expression and characterization of Kluyveromyces lactis β-galactosidase in Escherichia coli. Biotechnol Lett 25:1769–1774

    Article  PubMed  CAS  Google Scholar 

  • Malamy M, Horecker BL (1961) The localization of alkaline phosphatase in E. coli K12. Biochem Biophys Res Commun 5:104–108

    Article  PubMed  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • McCammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ, Holloway PE, Skerratt JH, Nichols PD, Rankin LM (1998) Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 48:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  PubMed  CAS  Google Scholar 

  • Møller PL, Jørgensen F, Hansen OC, Madsen SM, Stougaard P (2001) Intra- and extracellular β-galactosidases from Bifidobacterium bifidum and B. infantis: molecular cloning, heterologous expression and comparative characterization. Appl Environ Microbiol 67:2276–2283

    Article  PubMed  Google Scholar 

  • Nakagawa T, Fujimoto Y, Uchino M, Miyaji T, Takano K, Tomizuka N (2003) Isolation and characterization of psychrophiles producing cold-active β-galactosidase. Lett Appl Microbiol 37:154–157

    Article  PubMed  CAS  Google Scholar 

  • Nichols D, Bowman J, Sanderson K, Nichols CM, Lewis T, McMeekin T, Nichols PD (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  • Phan Tran L-S, Szabo L, Fulop L, Orosz L, Sik T, Holczinger A (1998) Isolation of a β-galactosidase-encoding gene from Bacillus licheniformis: purification and characterization of the recombinant enzyme expressed in Escherichia coli. Curr Microbiol 37:39–43

    Article  PubMed  CAS  Google Scholar 

  • Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128

    Article  PubMed  CAS  Google Scholar 

  • Sørensen HP, Sperling-Petersen HU, Mortensen KK (2003) A favorable solubility partner for the recombinant expression of streptavidin. Protein Expr Purif 32:252–259

    Article  PubMed  CAS  Google Scholar 

  • Souzu H (1980) Studies on the damage to Escherichia coli cell membrane caused by different rates of freeze-thawing. Biochim Biophys Acta 603:13–26

    Article  PubMed  CAS  Google Scholar 

  • Stougaard P, Jørgensen F, Johnsen MG, Hansen OC (2002) Microbial diversity in ikaite tufa columns: an alkaline, cold ecological niche in Greenland. Environ Microbiol 4:487–493

    Article  PubMed  CAS  Google Scholar 

  • Trimbur DE, Gutshall KR, Prema P, Brenchley JE (1994) Characterization of a psychrotrophic Arthrobacter gene and its cold-active β-galactosidase. Appl Environ Microbiol 60:4544–4552

    PubMed  CAS  Google Scholar 

  • Turkiewicz M, Kur J, Bialkowska A, Cieslinski H, Kalinowska H, Bielecki S (2003) Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted β-galactosidase. Biomol Eng 20:317–324

    Article  PubMed  CAS  Google Scholar 

  • Zähner D, Hakenbeck R (2000) The Streptococcus pneumoniae beta-galactosidase is a surface protein. J Bacteriol 182:5919–5921

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful for the technical excellence and practical support provided by Bente Smith Thorup, Janni Kristensen, and Gunhild Siboska. Kim K. Mortensen was funded by grants from the Danish Natural Science Research Council and Carlsberg (grant nos. 21-03-0465, 21-04-0149 and ANS-1649/40). We also thank the Greenland Homerule for permission to collect samples and the Danish Ministry of Science, Technology, and Innovation for initial funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads G. Johnsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sørensen, H.P., Porsgaard, T.K., Kahn, R.A. et al. Secreted β-galactosidase from a Flavobacterium sp. isolated from a low-temperature environment. Appl Microbiol Biotechnol 70, 548–557 (2006). https://doi.org/10.1007/s00253-005-0153-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0153-0

Keywords

Navigation