Skip to main content
Log in

Effect of red mold rice on antifatigue and exercise-related changes in lipid peroxidation in endurance exercise

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study evaluated the effect of red mold rice supplementation on antifatigue and exercise-related changes in lipid peroxidation of male adult Wistar rats through swimming exercise. Thirty 16-week-old rats were studied by dividing them into three groups (ten for each group). Other than the control group (CD), the other two groups were divided into a high-dose (HD) treatment group (5 g red mold rice/kg body weight for the HD group), and a low-dose (LD) group (1 g red mold rice/kg body weight for the LD group). Swimming endurance tests were conducted after 28 days of red mold rice supplementation, and the result showed that the treatment group showed a higher exercise time (CD, 78.0±6.4; LD, 104.2±9.6; and HD, 129.4±10.9 min; p<0.05) and a higher blood glucose concentration (CD, 76.67±8.08; LD, 111.34±8.50; and HD, 117.67±11.06 mg/dl; p<0.05) than the CD. Moreover, the blood lactate (CD, 45.00±0.90; LD, 31.41±1.80; and HD, 28.89±1.62 mg/dl; p<0.05), blood urea nitrogen (CD, 21.87±0.75; LD, 20.33±0.83; and HD, 20.53±1.09 mg/dl; p<0.05), and hemoglobin (CD, 14.20±0.21; LD, 13.70±0.55; and HD, 13.28±0.35 g/dl; p<0.05) were also significantly lower than those of the CD. Besides, the result suggested that the red mold rice supplementation may decrease the contribution of exercise-induced oxidative stress and improve the physiological condition of the rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe T, Takiguchi Y, Tamura M, Shimura J, Yamazaki KI (1995) Effect of vespa amino acid mixture (VAAM) isolated from hornet larval saliva and modified VMM nutrients on endurance exercise in swimming mice improvement in performance and changes of blood lactate and glucose. Jpn J Physiol Fitness Sports Med 44:225–238

    Google Scholar 

  • Ahlborg C, Felig P (1982) Lactate and glucose exchange across the forearm legs and splanchnic bed during and after prolonged leg exercise. J Clin Invest 69:45–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alessio HM, Goldfarb AH (1988) Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. J Appl Physiol 64:1333–1336

    CAS  PubMed  Google Scholar 

  • Anyia Y, Yokomakura T, Yonamine M, Shimada K, Nagamine T, Shimabukuro M, Gibo H (1999) Screening of antioxidant action of various molds and protection of Monascus anka against experimentally induced liver injuries of rats. Gen Pharmacol 32:225–231

    Google Scholar 

  • Anyia Y, Ohani II, Higa T, Miyagi C, Gibo H, Shimabukuro M, Nakanish H, Taira J (2000) Dimerumic acid as an antioxidant of the mold: Monascus anka. Free Radic Biol Med 28:999–1004

    Google Scholar 

  • Armstrong RB (1990) Initial events in exercise-induced muscular injury. Med Sci Sports Exerc 22:429–435

    CAS  PubMed  Google Scholar 

  • Bazzarva TL, Murdoch DD, Wu SL, Herr DC, Snider IP (1992) Plasma amino acid responses of trained athletes to two successive exhaustion trials with and without interim carbohyrate feeding. Am Coll Nutr 11:501–511

    Google Scholar 

  • Bird P, Draper H (1984) Comparative studies on different methods of malonaldehyde determination. Methods Enzymol 105:299–305

    CAS  PubMed  Google Scholar 

  • Blanc PJ, Loret MO, Santerre AT, Pareilleux A, Prome D, Prome JC, Laussac JP, Goma G (1994) Pigment of Monascus. J Food Sci 59:862–865

    CAS  Google Scholar 

  • Blomstrand B, Newsholme EA (1992) Effect of branched chain amino acid supplementation on the exercise induced change in aromatic amino acid concentration in human muscle. Acta Physiol Scand 146:293–298

    CAS  PubMed  Google Scholar 

  • Chance BH, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  • Cho SH, Choi YS (1994) Lipid peroxidation and antioxidant status is affected by different vitamin E levels when feeding fish oil. Lipids 29:47–52

    CAS  PubMed  Google Scholar 

  • Corongiu F, Lai M, Milai A (1983) Carbon tetrachloride, bromo-trichloromethane and ethanol acute intoxication. J Biochem 212:625–631

    CAS  Google Scholar 

  • Davies KJA, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 10:1198–1200

    Google Scholar 

  • Devlin JT, Brodsky I, Scrimgeour A, Fuller S, Bier DM (1990) Amino acid metabolism after intense exercise. Am J Physiol 258:249–255

    Google Scholar 

  • Donovan CM, Sumida KB (1990) Training improves glucose homeostasis in rats during exercise via glucose production. Am J Physiol 258:770–776

    Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    CAS  PubMed  Google Scholar 

  • Endo A (1979) Monacolin K, a new hypercholesterolemic agent produced by a Monascus species. J Antibiot 32:852–854

    CAS  PubMed  Google Scholar 

  • Gobatto CA, Rostom de Mell MA, Sibuya CY, Moreira de Azevedo JR (2001) Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol 130:21–27

    CAS  Google Scholar 

  • Guezennec CY, Abdelmalki A, Serrurier B (1998) Effect of prolonged exercise on brain ammonia and amino acids. Int J Sports Med 19:323–327

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1995) Lipid peroxidation: a radical chain reaction. In: Free radicals in biology and medicine. Oxford University Press, London, pp 188–218

    Google Scholar 

  • Jeon SM, Bok SH, Jang MK, Lee MK, Nam KT, Park YB, Rhee SJ, Choi MS (2001) Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci 69:2855–2866

    CAS  PubMed  Google Scholar 

  • Ji LL (1999) Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 222:283–292

    CAS  PubMed  Google Scholar 

  • Ji LL, Fu RG (1992) Responses of glutathione system and oxidant enzymes to exhaustive exercise and hydroperoxide. J Appl Physiol 72:549–554

    CAS  PubMed  Google Scholar 

  • Ji LL, Mitchell EW (1994) Effects of adriamycin on heart mitochondrial function in rested and exercised rats. Biochem Pharmacol 47:877–885

    CAS  PubMed  Google Scholar 

  • Ji LL, Dillon D, Wu E (1990) Alteration of antioxidant enzymes with aging in rats skeletal muscle and liver. Am J Physiol 258:918–923

    Google Scholar 

  • John-Alder HB, McAllister RM, Teriung RL (1987) Reduced running endurance in gluconeogenesis inhibited rats. Am J Physiol 251:137–142

    Google Scholar 

  • Juzlova P, Martinkov L, Kren V (1996) Secondary metabolites of the fungus Monascus; a review. J Ind Microbiol 16:163–170

    CAS  Google Scholar 

  • Kanter MM (1994) Free radicals, exercise, and antioxidant supplementation. Int J Sport Nutr 4:205–220

    CAS  PubMed  Google Scholar 

  • Kono I, Himeno K (2000) Changes in γ-aminobutyric acid content during beni-koli making. Biosci Biotechnol Biochem 64:617–619

    CAS  PubMed  Google Scholar 

  • Lawler JM, Powers SK, Dijk H, Visser T, Kordus MJ, Ji LL (1994) Metabolic and antioxidant enzyme activities in the diaphragm: effects of acute exercise. Respir Physiol 96:139–149

    CAS  PubMed  Google Scholar 

  • Lucas J, Schumacker J, Kunz B (1993) Solid state fermentation of rice by Monascus purpureus. J Korean Soc Food Sci 9:149–159

    Google Scholar 

  • Margaritis I, Palazzetti S, Rousseau AS, Richard MJ, Favier A (2003) Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. J Am Coll Nutr 22:147–156

    CAS  PubMed  Google Scholar 

  • Marquezi ML, Roschel HA, Costa ADS, Sawada LA, Lancha AH Jr (2003) Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. Int J Sport Nutr Exerc Metab 13:65–75

    CAS  PubMed  Google Scholar 

  • Martinkova L, Juzlova P, Vesely D (1995) Biological activity of polyketide pigment production by fungus Monascus. J Appl Bacteriol 79:609–616

    CAS  Google Scholar 

  • Martinkova L, Juzlova P, Kren V, Kucerouva Z, Havlicek V, Olsovsky P, Hovorka O, Rihova B, Vesly D, Vesela D, Ulrichova J, Prikrylova V (1999) Biological activities of oligoketide pigments of Monascus purpureus. Food Addit Contam 16:15–24

    CAS  PubMed  Google Scholar 

  • Nicolson GL (2001) Lipid replacement as an adjunct to therapy for chronic fatigue, anti-aging and restoration of mitochondrial function. J Am Nutraceut Ass 4:11–19

    Google Scholar 

  • Paglia DE, Valentine JP (1967) Studies in the quantitative characterization of erythrocyte glutathion peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  • Putman CT, Spriet LL, Hultman E, Lindinger MI, Lands LC, McKelvie S, Cederbland C, Jones NL, Heigenhauser CJF (1993) Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. Am J Physiol 265:752–760

    Google Scholar 

  • Sen CK (1995) Oxygen toxicity and antioxidants. Indian J Physiol Pharmacol 39:177–196

    CAS  PubMed  Google Scholar 

  • Su YC, Huang JH (1976) Studies on the production of anka-pigment. J Chin Agric Chem Soc 14:45–58

    CAS  Google Scholar 

  • Van der Vusse PB, Saris CJ (1991) Carbohydrate supplementation glycogen depletion and amino acid metabolism during exercise. Am J Physiol 260:883–890

    Google Scholar 

  • Wang JJ, Pan TM (2003) Effect of red mold rice supplements on serum and egg yolk cholesterol levels of laying hens. J Agric Food Chem 51:4824–4829

    CAS  PubMed  Google Scholar 

  • Wong HC, Koehler PE (1981) Production and isolation of an antibiotic from Monascus purpureus and its relationship to pigment production. J Food Sci 46:589–592

    CAS  Google Scholar 

  • Wu IT (1999) The effects of serum biochemical value with different beverage to replenish and intermittent exercise in high intensity. Tahan Junior College Engineering Business J 13:387–400

    Google Scholar 

  • Wu GF, Wu XC (2000) Screening DPPH radical scavengers from Monascus sp. Acta Microbiol Sin 40:394–399

    CAS  Google Scholar 

  • Yasukawa K, Takahashi M, Natori S, Yamazaki M, Takeuchi M, Takido M (1994) Azaphilones inhibit tumor promotion by 12-o-tetradecanoyl-phorbol-13-acetate. Oncology 45:108–112

    Google Scholar 

  • Zhou Q, Kummerow FA (2000) Antioxidative effects of lovastatin in cultured human endothelial cells. J Nutr Biochem 13:200–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Ming Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JJ., Shieh, MJ., Kuo, SL. et al. Effect of red mold rice on antifatigue and exercise-related changes in lipid peroxidation in endurance exercise. Appl Microbiol Biotechnol 70, 247–253 (2006). https://doi.org/10.1007/s00253-005-0051-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0051-5

Keywords

Navigation