Skip to main content
Log in

Biotransformation of 6,7-epoxygeraniol by fungi

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biotransformation of 6,7-epoxygeraniol by resting cells of selected fungi was investigated. The main product obtained from the transformation in Rhodotorula glutinis and R. marina cultures was 6,7-epoxynerol (5–48% of chloroform extracts), whereas Saccharomyces cerevisiae, Candida parapsilosis and C. kefyr reduced this substrate to 6,7-epoxycitronellol (30–33% of chloroform extracts). Cultures of Yarrowia lipolytica, Botrytis cinerea and S. cerevisiae promoted the cyclisation of 6,7-epoxygeraniol to 2-methyl-2-(2-hydroxyethyl)-5-(2-hydroxyprop-2-yl)tetrahydrofuran (11–99% of chloroform extracts). The biotransformation of 6,7-epoxynerol was also investigated. However, none of the tested micro-organisms converted this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93:2189–2206

    CAS  Google Scholar 

  • Abraham WR, Stumpf B, Arfmann HA (1990) Chiral intermediates by microbial epoxidations. J Essential Oil Res 2:251–257

    Google Scholar 

  • Barr KJ, Berk SC, Buchwald SL (1994) Titanocene-catalyzed reduction of esters using polymethylhydrosiloxane as the stoichiometric reductant. J Org Chem 59:4323–4326

    Google Scholar 

  • Bock G, Benda I, Schreier P (1986) Biotransformation of linalool by Botrytis cinerea. J Food Sci 51:659–662

    Google Scholar 

  • Carriere F, Gil G, Tapie P, Chagvardieff P (1989) Biotransformation of geraniol by photoautotrophic, photoautotrophic and heterotrophic plant cell suspension. Phytochemistry 28:1087–1090

    Article  Google Scholar 

  • David L, Veschambre H (1984) Preparation of linalool oxides by bioconversion. Tetrahedron Lett 25:543–546

    Article  Google Scholar 

  • Demyttenaere JCR, Willemen HM (1998) Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger. Phytochemistry 47:1029–1036

    Article  Google Scholar 

  • Demyttenaere JCR, Carmen Herrera M del, De Kimpe N (2000) Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochemistry 55:363–373

    Article  Google Scholar 

  • Fournier-Nguefack C, Lhoste P, Sinou D (1997) Palladium (0)-catalysed synthesis of cis- and trans-linalyl oxides. Tetrahedron 53:4353–4362

    Article  Google Scholar 

  • Gbolade AA, Lockwood GB (1989) Selective biotransformation of monoterpenoids by cell suspension of Petroselinum crispum. Z Naturforsch 44:1066–1068

    Google Scholar 

  • Gramatica P, Manitto P, Ranzin BM, Delbianco A, Franca Villa M (1982) Stereospecific reduction of geraniol to (R)-(+)-citronellol by Saccharomyces cerevisiae. Experimenta 38:775–776

    Google Scholar 

  • Guardida J, Iborra JL, Rodenas L, Canovas M (1996) Biotransformation from geraniol to nerol by immobilized grapevine cells. Appl Biochem Biotechnol 56:169–180

    Google Scholar 

  • King AJ, Dickinson JR (2003) Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Res 3:53–56

    Article  Google Scholar 

  • Klein E, Rojahn W, Henneberg D (1964) Die Chemie der Epoxide der Acyclischen Monoterpenealkohole Geraniol, Nerol und Linalool. Tetrahedron 20:2025–2035

    Article  Google Scholar 

  • Limberger RP, Ferreira L, Castilhos T, Aleixo AM, Petersen RZ, Germani JC, Zuanazzi JA, Fett-Neto AG, Henriques AT (2003) The ability of Bipolaris sorokiniana to modify geraniol and (−)-alpha-bisabolol as exogenous substrates. Appl Microbiol Biotechnol 61:552–555

    Google Scholar 

  • Mateo JJ, Jimenez M (2000) Monoterpenes in grape juice and wines. J Chromatogr A 881:557–567

    Article  CAS  PubMed  Google Scholar 

  • Olhoff G (1994) Scent and fragrances. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Onken J, Berger RG (1999) Biotransformation of citronellol by the basidiomycete Cystoderma carcharias in an aerated-membrane bioreactor. Appl Microbiol Biotechnol 51:158–163

    Article  Google Scholar 

  • Wendt KU, Schulz GE, Corey EJ, Liu DR (2000) Enzyme mechanisms for polycyclic triterpene formation. Angew Chem Int Ed Engl 39:2812–2833

    Article  Google Scholar 

  • Wüst M, Mosandl A (1999) Important chiral monoterpenoid ethers in flavours and essential oils—enantioselective analysis and biogenesis. Eur Food Res Technol 209:3–11

    Article  Google Scholar 

  • Zheng YF, Doodd DS, Oehschlager AC (1995) Synthesis of vinyl sulfide analogs of 2,3-oxidosqualene and their inhibition of 2,3-oxidosqualene lanosterol-cyclases. Tetrahedron 51:5255–5276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Anioł.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anioł, M., Huszcza, E. Biotransformation of 6,7-epoxygeraniol by fungi. Appl Microbiol Biotechnol 68, 311–315 (2005). https://doi.org/10.1007/s00253-004-1886-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1886-x

Keywords

Navigation