Skip to main content

Advertisement

Log in

About the nature of RNA interference

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the context of yet unclarified issues of RNA interference (RNAi), it is discussed that RNAi-induced histone modification may not only have the purpose of inactivating native genes by blocking their transcription in the sense direction but may also simultaneously trigger transcription of the corresponding antisense strand to form double-stranded RNA for posttranscriptional gene-silencing in cells lacking RNA replicase activities. Invading foreign genetic traits may be posttranscriptionally silenced through complementary transcripts from specific, highly variable genomic regions, which are able to finally match any given sequence by the appropriate recombination and processing of their transcripts. The information to fight these traits may additionally become anchored in the genome, to provide at least a temporary “immunity” and may be inherited at least for a few generations. It is further proposed that: (1) RNA viruses evolved from constituents of the RNAi machinery through the capture of functions essential for their maintenance and replication and (2) viruses and RNAi are mutually interacting components of a universal and predominant genetic steering system that is involved in the modulation of gene expression on the cellular level and simultaneously constitutes a driving force for evolution, particularly in imperfect organisms. Such a model would deliver explanations for yet unresolved issues of RNAi, the clarification of which will have a significant impact on its future medical and biotechnological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism and applications. Microbiol Mol Biol Rev 67:657–685

    Article  Google Scholar 

  • Ait-Si-Ali S, Guasconi V, Harel-Bellan A (2004) RNA interference and its possible use in cancer therapy. Bull Cancer 91:15–18

    Google Scholar 

  • Allshire R (2002) RNAi and heterochromatin—a hushed-up affair. Science 297:1818–1837

    Article  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Google Scholar 

  • Baril M, Dulude D, Steinberg SV, Brakier-Gingras L (2003) The frameshift stimulatory signal of human immunodeficiency virus type 1 group O is a pseudoknot. J Mol Biol 331:571–583

    Article  Google Scholar 

  • Bartel PB (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    Article  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Google Scholar 

  • Berger G (2004) Hypotheses on a germline origin of antibody diversity. Possible applications: improvement of the efficiency of immune response and autoimmune disease treatment. Med Hypotheses 63:847–854

    Article  Google Scholar 

  • Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34:263–264

    Article  CAS  PubMed  Google Scholar 

  • Campbell MA, Fitzgerald HA, Ronald PC (2002) Engineering pathogen resistance in crop plants. Transgenic Res 11:599–613

    Article  Google Scholar 

  • Caplen NJ (2004) Gene therapy progress and prospects. Downregulating gene expression: the impact of RNA interference. Gene Ther 11:1241–1248

    Article  Google Scholar 

  • Chen X, Chamarro M, Lee SI, Shen LX, Hines JV, Tinoco I, Varmus HE (1995) Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting. Nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. EMBO J 14:842–852

    Google Scholar 

  • Cheng JC, Sakamoto KM (2004) The emerging role of RNA interference in the design of novel therapies in oncology. Cell Cycle 3:1398–1401

    Google Scholar 

  • Chiu YL, Cao H, Jacque JM, Stevenson M, Rana TM (2004) Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 78:2517–2529

    Article  Google Scholar 

  • Clayton J (2004) The silent treatment. Nature 431:599–605

    Google Scholar 

  • Cogoni C, Macino G (1999) Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399:166–169

    Google Scholar 

  • Dave RS, Pomerantz RJ (2003) RNA interference: on the road to an alternate therapeutic strategy. Rev Med Virol 13:373–385

    Article  Google Scholar 

  • Djikeng A, Shi H, Tschudi C, Ullu E (2001) RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24–26 nucleotide RNAs. RNA 7:1522–1530

    Google Scholar 

  • Duxberry MS, Matros E, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) Systemic siRNA-mediated gene silencing—a new approach to targeted therapy of cancer. Ann Surg 240:667–676

    Article  Google Scholar 

  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Gen Biol 5:R1

    Article  Google Scholar 

  • Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, Chen J (2003) RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci USA 100:2718–2723

    Article  Google Scholar 

  • Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 116:555–566

    Article  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  Google Scholar 

  • Grishok A, Tabara H, Mello CC (2000) Genetic requirements for inheritance of RNAi in C. elegans. Science 287:2494–2497

    Article  Google Scholar 

  • Guenther RH, Sit TL, Gracz HS, Dolan MA, Townsend HL, Liu G, Newman WH, Agris PF, Lommel SA (2004) Structural characterization of an intermolecular RNA–RNA interaction involved in the transcription regulation element of a bipartite plant virus. Nucleic Acids Res 32:2819–2828

    Article  Google Scholar 

  • Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SIS (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237

    Article  CAS  PubMed  Google Scholar 

  • Hall IM, Noma K, Grewal SS (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci USA 100:193–198

    Article  Google Scholar 

  • Hamada M, Ohtsuka T, Kawaida R, Koizumi M, Morita K, Furukawa H, Imanishi T, Miyagishi M, Taira K (2002) Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′-ends of siRNA. Antisense Nucleic Acid Drug Dev 12:301–309

    Article  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    Article  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Hannon GJ, Conklin DS (2004) RNA interference by short hairpin RNAs expressed in vertebrate cells. Methods Mol Biol 257:255–266

    Google Scholar 

  • Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378

    Google Scholar 

  • Hendrickson TL, Crécy-Lagard V, Schimmel P (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem 73:147–176

    Article  Google Scholar 

  • Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res 30:1757–1766

    Article  Google Scholar 

  • Hutvagner G, Zamore PD (2002) RNAi: nature abhors a double-strand. Curr Opin Genet Dev 12:225–232

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  Google Scholar 

  • Jenuwein T (2002) An RNA-guided pathway for the epigenome. Science 297:2215–2218

    Article  Google Scholar 

  • Ji Y, Dezhong Y, Fox B, Holmes DJ, Payne D, Rosenberg M (2004) Validation of antibacterial mechanism of action using regulated antisense RNA expression in Staphylococcus aureus. FEMS Microbiol Lett 231:177–184

    Article  Google Scholar 

  • Kariko K, Bhuyan P, Capodici J, Ni H, Lubinski J, Friedman H, Weissman D (2004) Exogenous siRNA mediates sequence-independent gene suppression by signalling through toll-like receptor 3. Cells Tissues Organs 177:132–138

    Article  Google Scholar 

  • Klipcan L, Safro M (2004) Amino acid biogenesis, evolution of the genetic code and aminoacyl-tRNA synthetases. J Theor Biol 228:389–396

    Article  Google Scholar 

  • Koonin EV (1991) Similarities in RNA helicases. Nature 325:290–292

    Google Scholar 

  • Koonin EV (2003) Horizontal gene transfer: the path to maturity. Mol Microbiol 50:725–727

    Article  Google Scholar 

  • Koonin EV, Gorbalenya AE (1989) Evolution of RNA genomes: does the high mutation rate necessitate high rate of evolution of viral proteins? J Mol Evol 28:524–527

    Google Scholar 

  • Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430

    Google Scholar 

  • Knight KL (1992) Restricted VH gene usage and generation of antibody diversity in rabbit. Annu Rev Immunol 10:593–616

    Google Scholar 

  • Lawrence JG, Hendrickson H (2003) Lateral gene transfer: when will adolescence end? Mol Microbiol 50:739–749

    Article  Google Scholar 

  • Lipardi C, Wei Q, Paterson BM (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107:297–307

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–370

    Google Scholar 

  • Lippman Z, May B, Yordan C, Singer T, Martienssen R (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PloS Biol 1:420–428

    Article  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 432:343–349

    Article  Google Scholar 

  • Mello CG, Conte D (2004) Revealing the world of RNA interference. Nature 431:338–342

    Google Scholar 

  • Mitter N, Sulistyowati E, Dietzgen RG (2003) Cucumber mosaic virus infection transiently breaks ds-RNA induced transgenic immunity to potato virus Y in tobacco. Mol Plant-Microb Interact 16:936–944

    Google Scholar 

  • Mochizuki K, Fine NA, Fujisawa T, Gorovski MA (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 110:689–699

    Article  Google Scholar 

  • Murchison EP, Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16:223–229

    Article  Google Scholar 

  • Nixon PL, Rangan A, Kim YG, Rich A, Hoffman DW, Henning M, Giedroc DP (2002) Solution structure of a luteoviral P!-P2 frameshifting mRNA pseudoknot. J Mol Biol 322:621–633

    Article  Google Scholar 

  • Orgel LE (2004) Prepiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  Google Scholar 

  • Pandit NN, Russo VE (1992) Reversible inactivation of a foreign gene, hph, during the asexual cycle in Neurospora crassa transformants. Mol Gen Genet 234:412–422

    Article  Google Scholar 

  • Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  Google Scholar 

  • Pickford AS, Catalanotto C, Cogoni C, Macino G (2002) Quelling in Neurospora crassa. Adv Genet 46:277–303

    Article  Google Scholar 

  • Reanny DC (1982) The evolution of RNA viruses. Annu Rev Microbiol 36:47–73

    Article  Google Scholar 

  • Reddy EP, Reynolds RX, Santos E, Barbacid M (1982) A point mutation is responsible for the acquisition of transforming properties by the I24 human bladder carcinoma oncogene. Nature 300:149–152

    Google Scholar 

  • Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353

    Google Scholar 

  • Rose DR (1982) The generation of antibody diversity. Am J Hematol 13:91–99

    Google Scholar 

  • Ryther RCC, Flynt AS, Phillips JA, Patton JG (2004) siRNA therapeutics: big potential from small RNAs. Gene Ther 12:5–11

    Google Scholar 

  • Sakamoto KM (2004) Knocking down human disease: potential uses of RNA interference in research and gene therapy. Pediatr Res 55:912–913

    Article  Google Scholar 

  • Seeburg PH, Colby WW, Capon DJ, Goeddel DV, Levinson AD (1984) Biological properties of human c-Ha-ras 1 genes mutated at codon 12. Nature 312:71–75

    Google Scholar 

  • Schmidt FR (2002) Beta-lactam antibiotics: aspects of manufacture and therapy. In: Osiewacz HD (ed) The Mycota vol X: industrial application. Springer, Berlin Heidelberg New York, pp 69–91

    Google Scholar 

  • Schmidt FR (2004a) RNA interference detected 20 years ago? Nat Biotechnol 22:267–268

    Article  Google Scholar 

  • Schmidt FR (2004b) The challenge of multidrug resistance: actual strategies in the development of novel antibacterials. Appl Microbiol Biotechnol 63:335–343

    Google Scholar 

  • Schramke V, Allshire R (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301:1069–1074

    Article  Google Scholar 

  • Seo MY, Abrignani S, Han JA (2003) Small interfering RNA-mediated inhibition of hepatitis C virus replication in the human hepatoma cell line Huh-7. J Virol 77:810–812

    Article  Google Scholar 

  • Sharp PA (2001) RNA interference—2001. Genes Dev 15:485–490

    Article  CAS  PubMed  Google Scholar 

  • Sledz CA, Williams BRG (2004) RNA interference and double-stranded-RNA-activated pathways. Biochem Soc Trans 32

  • Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J (2004) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14:1741–1748

    Article  Google Scholar 

  • Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EM (1982) Mechanism of activation of a human oncogene. Nature 300:143–149

    Google Scholar 

  • Taparowski E, Suard E, Fasano D, Shimizu K, Goldfarb M, Wigler M (1982) Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300:762–765

    Google Scholar 

  • Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed T (2004) RNAi mediated targeting of heterochromatin by the RITS complex. Science 303:672–676

    Article  Google Scholar 

  • Wang QC, Nie QH, Feng ZH (2003) RNA interference: antiviral weapon and beyond. World J Gastroenterol 9:1657–1661

    Google Scholar 

  • Wassenegger M (2002) Gene silencing-based disease resistance. Transgenic Res 11:639–653

    Article  Google Scholar 

  • Weiner AM (2002) SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14:343–350

    Article  Google Scholar 

  • Yin D, Fox B, Lonetto MI, Etherton MR, Payne DJ, Holmes DJ, Rosenberg M, Ji Y (2004) Identification of microbial targets using a comprehensive genomic approach. Pharmacogenomics 5:101–113

    Article  Google Scholar 

  • Zeng Y, Cullen BR (2003) Sequence requirements for micro RNA processing and function in human cells. RNA 9:112–123

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, F.R. About the nature of RNA interference. Appl Microbiol Biotechnol 67, 429–435 (2005). https://doi.org/10.1007/s00253-004-1882-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1882-1

Keywords

Navigation