Skip to main content
Log in

Lactobacillus reuteri ATCC 53608 mdh gene cloning and recombinant mannitol dehydrogenase characterization

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A gene encoding mannitol-2-dehydrogenase (E.C. 1.1.1.138) (MDH) was cloned from Lactobacillus reuteri and expressed in Escherichia coli. The 1,008-bp gene encodes a protein consisting of 336 amino acids, with a predicted molecular mass of 35,920 Da. The deduced amino acid sequence of L. reuteri MDH (LRMDH) is 77% and 76% similar to the MDHs from Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides, respectively. The purified recombinant enzyme appears as a single band of 40 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but gel filtration indicates that the native enzyme is a dimer. The optimum temperature for the recombinant enzyme is 37°C, the pH optima for D-fructose reduction and D-mannitol oxidation are 5.4 and 6.2, respectively. The Km values for NAD (9 mM) and NADH (0.24 mM) are significantly higher than those for NADP (0.35 mM) and NADPH (0.04 mM). The Km values of LRMDH for D-fructose and D-mannitol are 34 mM and 54 mM, respectively. Contrary to what the enzyme sequence suggests, recombinant LRMDH contains a single catalytic zinc per subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarnikunnas J, Rönnholm K, Palva A (2002) The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes. Appl Microbiol Biotechnol 59:665–671

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1994) In: Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burdette DS, Secundo F, Phillips RS, Dong J, Scott RA, Zeikus JG (1997) Biophysical and mutagenic analysis of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase activity and specificity. Biochem J 326:717–724

    CAS  PubMed  Google Scholar 

  • Hahn G, Kaup B, Bringer-Meyer S, Sahm H (2003) A zinc-containing mannitol dehydrogenase from Leuconostoc pseudomesenteroides ATCC 12291: purification of the enzyme and cloning of the gene. Arch Microbiol 179:101–107

    CAS  PubMed  Google Scholar 

  • Hunt JB, Neece SH, Ginsburg A (1984) The use of 4-(2-pyridylazo) resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase. Anal Biochem 146:150–157

    Google Scholar 

  • Hattori K, Suzuki T (1973) Large scale production of erythritol and its conversion to D-mannitol production by n-alkane-grown Candida zeylanoides. Agric Biol Chem 38:1203–1208

    Google Scholar 

  • Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339

    Article  CAS  PubMed  Google Scholar 

  • Korakli M, Vogel RF (2003) Purification and characterization of mannitol dehydrogenase from Lactobacillus sanfranciscensis. FEMS Microbiol Lett 220:281–286

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685

    CAS  Google Scholar 

  • Martinez G, Barker A, Horecker BL (1963) A specific mannitol dehydrogenase from Lactobacillus brevis. J Biol Chem 238:1598–1603

    CAS  Google Scholar 

  • Nordling E, Jornvall H, Persson B (2002) Medium-chain dehydrogenases/reductases (MDR). Family characterizations including genome comparisons and active site modeling. Eur J Biochem 269:4267–4276

    Article  CAS  PubMed  Google Scholar 

  • Onishi H, Suzuki T (1970) Microbial production of D-mannitol and D-fructose from glycerol. Biotechnol Bioeng 12:913–920

    CAS  PubMed  Google Scholar 

  • Rodriguez E, A J, Rodriguez R, Nunez M, Medina M (2003) Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Lett Appl Microbiol 37:259–63

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2004) Purification and characterization of a novel mannitol dehydrogenase from Lactobacillus intermedius. Biotechnol Prog 20:537–542

    Article  CAS  PubMed  Google Scholar 

  • Salou P, Loubiere P, Pareilleux A (1994) Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose. Appl Environ Microbiol 60:1459–1466

    CAS  PubMed  Google Scholar 

  • Schneider KH, Giffhorn F (1989) Purification and properties of a polyol dehydrogenase from the phototrophic bacterium Rhodobacter sphaeroides. Eur J Biochem 184:15–19

    CAS  PubMed  Google Scholar 

  • Schneider KH, Giffhorn F, Kaplan S (1993) Cloning, nucleotide sequence and characterization of a mannitol dehydrogenase gene from Rhodobacter sphaeroides. J Gen Microbiol 139:2475–2484

    CAS  PubMed  Google Scholar 

  • Slatner M, Nidetzky B, Kulbe KD (1999) Kinetic studies of catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens. Biochemistry 38:10489–10498

    Article  CAS  PubMed  Google Scholar 

  • Slatner M, Nagl G, Haltrich D, Kulbe KD, Nidetzky B (1998) Enzymatic production of pure D-mannitol at high productivity. Biocatal Biotransform 16:351–363

    CAS  Google Scholar 

  • Soetaert W, Buchholz K, Vandamme EJ (1995) Production of D-mannitol and D-lactic acid by fermentation with Leuconostoc mesenteroides. Agro Food Industry Hi-tech 6:41–44

    CAS  Google Scholar 

  • Stoop JM, Mooibroeck H (1998) Cloning and characterization of NADP+-mannnitol dehydrogenase cDNA from the button mushroom Agaricus bisporus, and its expression in response to NaCl stress. Appl Environ Microbiol 64:4689–4696

    CAS  PubMed  Google Scholar 

  • Vallee B L, Auld DS (1990) Zinc coordination, function, structure of zinc enzymes and other proteins. Biochemistry 29:5648–5659

    Google Scholar 

  • Von Weymarn N, Hujanen M, Leisola M (2002) Production of d-mannitol by heterofermentative lactic acid bacteria. Process Biochem 37:1207–1213

    Article  Google Scholar 

  • Wisniak J, Simon R (1979) Hydrogenation of glucose, fructose, and their mixtures. Ind Eng Chem Prod Res Dev 18:50–57

    CAS  Google Scholar 

  • Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    Google Scholar 

  • Woodyer R, van der Donk W, Zhao H (2003) Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42:11604–11614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the FINE Company (Osaka, Japan) for financial assistance to Y. Sasaki. We are grateful to Dr. C. Vieille for helpful discussions and valuable suggestions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gregory Zeikus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, Y., Laivenieks, M. & Zeikus, J.G. Lactobacillus reuteri ATCC 53608 mdh gene cloning and recombinant mannitol dehydrogenase characterization. Appl Microbiol Biotechnol 68, 36–41 (2005). https://doi.org/10.1007/s00253-004-1841-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1841-x

Keywords

Navigation