Skip to main content
Log in

Fungal biotransformation of benzo[f]quinoline, benzo[h]quinoline, and phenanthridine

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cultures of Umbelopsis ramanniana (=Mucor ramannianus) were grown in fluid Sabouraud medium for 3 days, dosed with 0.23 mM benzo[f]quinoline, benzo[h]quinoline, or phenanthridine (benzo[c]quinoline), and incubated for another 18 days. Cultures were extracted and metabolites (66–75% of the UV absorbance) were separated by high-performance liquid chromatography. They were identified by mass spectrometry and nuclear magnetic resonance spectroscopy. Benzo[f]quinoline was metabolized to benzo[f]quinoline trans-7,8-dihydrodiol, benzo[f]quinoline N-oxide, and 7-hydroxybenzo[f]quinoline, benzo[h]quinoline was metabolized to benzo[h]quinoline trans-5,6-dihydrodiol, benzo[h]quinoline trans-7,8-dihydrodiol, and 7-hydroxybenzo[h]quinoline, and phenanthridine was metabolized to phenanthridine N-oxide and phenanthridin-6(5H)-one. At least one of the metabolites produced from each compound was mutagenic and could not be considered detoxified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams EA, LaVoie EJ, Hoffmann D (1983) Mutagenicity and metabolism of azaphenanthrenes. In: Cooke M, Dennis AJ (eds) Polynuclear aromatic hydrocarbons: formation, metabolism and measurement. Battelle, Columbus, pp 73–87

    Google Scholar 

  • Benson JM, Royer RE, Galvin JB, Shimizu RW (1983) Metabolism of phenanthridine to phenanthridone by rat lung and liver microsomes after induction with benzo[a]pyrene and aroclor. Toxicol Appl Pharmacol 68:36–42

    CAS  PubMed  Google Scholar 

  • Bleeker EAJ, Geest HG van der, Kraak MHS, Voogt P de, Admiraal W (1998) Comparative ecotoxicity of NPAHs to larvae of the midge Chironomus riparius. Aquat Toxicol 41:51–62

    Article  CAS  Google Scholar 

  • Bleeker EAJ, Noor L, Kraak MHS, Voogt P de, Admiraal W (2001) Comparative metabolism of phenanthridine by carp (Cyprinus carpio) and midge larvae (Chironomus riparius). Environ Pollut 112:11–17

    Article  CAS  PubMed  Google Scholar 

  • Chen H-Y, Preston MR (1998) Azaarenes in the aerosol of an urban atmosphere. Environ Sci Technol 32:577–583

    Article  CAS  Google Scholar 

  • El Sayed KA (2000) Microbial transformation of papaveraldine. Phytochemistry 53:675–678

    Article  CAS  PubMed  Google Scholar 

  • El Sayed KA (2001) Microbial transformation of hypoestenone. J Nat Prod 64:373–375

    Article  CAS  PubMed  Google Scholar 

  • Fiaux de Medeiros S, Avery MA, Avery B, Leite SGF, Freitas ACC, Williamson JS (2002) Biotransformation of 10-deoxoartemisinin to its 7β-hydroxy derivative by Mucor ramannianus. Biotechnol Lett 24:937–941

    Article  CAS  Google Scholar 

  • Furlong ET, Carpenter R (1982) Azaarenes in Puget Sound sediments. Geochim Cosmochim Acta 46:1385–1396

    Article  CAS  Google Scholar 

  • Herwijnen R van, Graaf C de, Govers HAJ, Parsons JR (2004) Estimation of kinetic parameter for the biotransformation of three-ring azaarenes by the phenanthrene-degrading strain Sphingomonas sp. LH128. Environ Toxicol Chem 23:331–338

    PubMed  Google Scholar 

  • Kandaswami C, Kumar S, Dubey SK, Sikka HC (1987) Metabolism of benzo[f]quinoline by rat liver microsomes. Carcinogenesis 8:1861–1866

    CAS  PubMed  Google Scholar 

  • Kraak MHS, Wijnands P, Govers HAJ, Admiraal W, Voogt P de (1997) Structural-based differences in ecotoxicity of benzoquinoline isomers to the zebra mussel (Dreissena polymorpha). Environ Toxicol Chem 16:2158–2163

    CAS  Google Scholar 

  • Kumar S, Sikka HC, Dubey SK, Czech A, Geddie N, Wang C-X, LaVoie EJ (1989) Mutagenicity and tumorigenicity of dihydrodiols, diol epoxides, and other derivatives of benzo[f]quinoline and benzo[h]quinoline. Cancer Res 49:20–24

    Google Scholar 

  • LaVoie EJ, Adams EA, Hoffmann D (1983) Identification of the metabolites of benzo[f]quinoline and benzo[h]quinoline formed by rat liver homogenate. Carcinogenesis 4:1133–1138

    CAS  PubMed  Google Scholar 

  • LaVoie EJ, Adams EA, Shigematsu A, Hoffmann D (1985) Metabolites of phenanthridine formed by rat liver homogenate. Drug Metab Dispos 13:71–75

    CAS  PubMed  Google Scholar 

  • LaVoie EJ, Dolan S, Little P, Wang C-X, Sugie S, Rivenson A (1988) Carcinogenicity of quinoline, 4- and 8-methylquinoline and benzoquinolines in newborn mice and rats. Food Chem Toxicol 26:625–629

    Article  CAS  PubMed  Google Scholar 

  • Meyer W, Gams W (2003) Delimitation of Umbelopsis (Mucorales, Umbelopsidaceae fam. nov.) based on ITS sequence and RFLP data. Mycol Res 107:339–350

    Article  CAS  PubMed  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (1999) Regioselective transformation of ciprofloxacin to N-acetylciprofloxacin by the fungus Mucor ramannianus. FEMS Microbiol Lett 177:131–135

    Article  CAS  PubMed  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microbiol 66:2664–2667

    Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Moody JD, Williams AJ, Beger RD, Sutherland JB (2001) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol 26:140–144

    Article  CAS  PubMed  Google Scholar 

  • Salicis F, Krivobok S, Jack M, Benoit-Guyod J-L (1999) Biodegradation of fluoranthene by soil fungi. Chemosphere 38:3031–3039

    Article  CAS  PubMed  Google Scholar 

  • Seixas GM, Andon BM, Hollingshead PG, Thilly WG (1982) The aza-arenes as mutagens for Salmonella typhimurium. Mutat Res 102:201–212

    Article  CAS  PubMed  Google Scholar 

  • Shindo K, Ohnishi Y, Chun H-K, Takahashi H, Hayashi M, Saito A, Iguchi K, Furukawa K, Harayama S, Horinouchi S, Misawa N (2001) Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes. Biosci Biotechnol Biochem 65:2472–2481

    Article  CAS  PubMed  Google Scholar 

  • Shinohara R, Kido A, Okamoto Y, Takeshita R (1983) Determination of trace azaarenes in water by gas chromatography and gas chromatography–mass spectrometry. J Chromatogr 256:81–91

    Article  CAS  Google Scholar 

  • Sutherland JB, Evans FE, Freeman JP, Williams AJ, Deck J, Cerniglia CE (1994) Identification of metabolites produced from acridine by Cunninghamella elegans. Mycologia 86:117–120

    CAS  Google Scholar 

  • Sutherland JB, Freeman JP, Williams AJ (1998) Biotransformation of isoquinoline, phenanthridine, phthalazine, quinazoline, and quinoxaline by Streptomyces viridosporus. Appl Microbiol Biotechnol 49:445–449

    Article  CAS  Google Scholar 

  • Vlaardingen PLA van, Steinhoff WJ, Voogt P de, Admiraal WA (1996) Property–toxicity relationships of azaarenes to the green alga Scenedesmus acuminatus. Environ Toxicol Chem 15:2035–2042

    Google Scholar 

  • Voogt P de, Bleeker EAJ, Vlaardingen PLA van, Fernández A, Slobodník J, Wever H, Kraak MHS (1999) Formation and identification of azaarene transformation products from aquatic invertebrate and algal metabolism. J Chromatogr B 724:265–274

    Google Scholar 

  • Willumsen PA, Nielsen JK, Karlson U (2001) Degradation of phenanthrene-analogue azaarenes by Mycobacterium gilvum strain LB307T under aerobic conditions. Appl Microbiol Biotechnol 56:539–544

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C.E. Cerniglia and R.J. Turesky for helpful comments and thank M.D. Adjei and A.J. Williams for technical advice. This work was supported in part by an appointment (E.L.C.) to the Summer Student Research Program at the National Center for Toxicological Research administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the United States Department of Energy and the United States Food and Drug Administration. The views presented in this article do not necessarily reflect those of the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Sutherland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutherland, J.B., Cross, E.L., Heinze, T.M. et al. Fungal biotransformation of benzo[f]quinoline, benzo[h]quinoline, and phenanthridine. Appl Microbiol Biotechnol 67, 405–411 (2005). https://doi.org/10.1007/s00253-004-1738-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1738-8

Keywords

Navigation