Skip to main content
Log in

Robust NADH-regenerator: improved α-haloketone-resistant formate dehydrogenase

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Formate dehydrogenases (FDH) are useful for the regeneration of NADH, which is required for asymmetric reduction by several dehydrogenases and reductases. FDHs have relatively low activity and are labile, especially to α-haloketones, thus FDH cannot be applied to the industrial manufacture of optically active α-haloalcohols. To stabilize a FDH from Mycobacterium vaccae (McFDH) against the α-haloketone ethyl 4-chloroacetoacetate (ECAA), a set of cysteine-mutant enzymes was constructed. Sensitivity to ECAA of mutant C6S was similar to that of the wild-type enzyme, and mutants C249S and C355S showed little activity. In contrast, mutant C256S exhibited remarkable tolerance to ECAA. Surprisingly, mutant C146S was activated by several organic compounds such as ethyl acetate. An optimized mutant, C6A/C146S/C256V (McFDH-26), was obtained by combining several effective mutations. Ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-ECHB] was synthesized from ECAA to 49.9 g/l with an optical purity of more than 99% e.e. using recombinant Escherichia coli cells coexpressing McFDH-26 and a carbonyl reductase (KaCR1) from Kluyveromyces aestuarii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asano Y, Sekiguchi T, Inukai H, Nakazawa A (1989) Purification and properties of formate dehydrogenase from Moraxella sp. strain C-1. J Bacteriol 170:3189–3193

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Devaux-Basseguy R, Bergel A, Comta M (1997) Potential application of NAD(P)-dependent oxidoreductases in synthesis: a survey. Enzyme Microb Technol 20:248–258

    Article  CAS  Google Scholar 

  • Dijken JP van, Oostra-Demkes GJ, Otto R, Harder W (1976) S-Formylglutathione: the substrate for formate dehydrogenase in methanol-utilizing yeasts. Arch Microbiol 111:77–83

    PubMed  Google Scholar 

  • Egorov AM, Avilova TV, Dikov MM, Popov VO, Rodionov YV, Berezin IV (1979) NAD-dependent formate dehydrogenase from methylotrophic bacterium strain 1. Eur J Biochem 99:569–576

    CAS  PubMed  Google Scholar 

  • Egorova OA, Avilova TV, Platonenkova LS, Egorov AM (1981) Isolation and properties of NAD-dependent formate dehydrogenase from the yeast Candida methylica. Biokhimiya 46:1119–1126

    CAS  Google Scholar 

  • Fedorchuk VV, Galkin AG, Yasny IE, Kulakova LB, Rojkova AM, Filippova AA, Tishlov VI (2002) Effect of interactions between amino acid residues 43 and 61 of thermal stability of bacterial formate dehydrogenases. Biochemistry (Moscow) 67:1385–1393

    Article  Google Scholar 

  • Galkin A, Kulakova L, Tishkov V, Esaki N, Soda K (1995) Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10. Appl Microbiol Biotechnol 44:479–483

    Article  CAS  PubMed  Google Scholar 

  • Hou CT, Patel RN, Laskin AI, Barnabe H (1982) NAD-linked formate dehydrogenase from methanol-grown Pichia pastoris NRRL-Y-7556. Arch Biochem Biophys 216:296–305

    CAS  PubMed  Google Scholar 

  • Hummel W (1999) Large scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol 17:487–492

    Article  CAS  PubMed  Google Scholar 

  • Iida M, Kitamura-Kimura K, Maeda H, Mineki S (1992) Purification and characterization of a NAD+-dependent formate dehydrogenase produced by Paracoccus sp. Biosci Biotechnol Biochem 56:1966–1970

    CAS  Google Scholar 

  • Izumi Y, Kanzaki H, Morita S, Futazuka H, Yamada H (1989) Characterization of crystalline formate dehydrogenase from Candida methanolica. Eur J Biochem 182:333–341

    CAS  PubMed  Google Scholar 

  • Karzanov VV, Correa CM, Bogatsky YG, Netrusov AI (1991) An alternative NAD+-dependent formate dehydrogenases in the facultative methylotroph Mycobacterium vaccae 10. FEMS Microbiol Lett 81:95–99

    Article  CAS  Google Scholar 

  • Kataoka M, Rohani LPS, Yamamoto K, Wada M, Kawabata H, Kita K, Yanase H, Shimizu S (1997) Enzymatic production of ethyl (R)-4-chloro-3-hydroxybutanoate: asymmetric reduction of ethyl 4-chloro-3-oxobutanoate by an Escherichia coli transformant expressing the aldehyde reductase gene from yeast. Appl Microbiol Biotechnol 48:699–703

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Yamamoto K, Kawabata H, Wada M, Kita K, Yanase H, Shimizu S (1999) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 51:486–490

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Kita K, Wada M, Yasohara Y, Hasegawa J, Shimizu S (2003) Novel bioreduction system for the production of chiral alcohols. Appl Microbiol Biotechnol 62:437–445

    Article  CAS  PubMed  Google Scholar 

  • Lamzin VS, Aleshin AE, Strokopytov BV, Yukhnevich MG, Popov VO, Harutyunyan EH, Wilson KS (1992) Crystal structure of NAD-dependent formate dehydrogenase. Eur J Biochem 206:441–452

    CAS  PubMed  Google Scholar 

  • Nanba H, Takaoka Y, Hasegawa J (2003a) Purification and characterization of formate dehydrogenase from Ancylobacter aquaticus strain KNK607M, and cloning of the gene. Biosci Biotechnol Biochem 67:720–728

    Article  CAS  PubMed  Google Scholar 

  • Nanba H, Takaoka Y, Hasegawa J (2003b) Purification and characterization of an α-haloketone-resistant formate dehydrogenase from Thiobacillus sp. strain KNK65MA, and cloning of the gene. Biosci Biotechnol Biochem 67:2145–2153

    Article  CAS  PubMed  Google Scholar 

  • Popov VO, Lamzin VS (1994) NAD+-dependent formate dehydrogenase. Biochem J 301:625–643

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schutte H, Flossdorf J, Sahm H, Kula MR (1976) Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. Eur J Biochem 62:151–160

    PubMed  Google Scholar 

  • Slusarczyk H, Felber S, Kula M-R, Pohl M (2000) Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues. Eur J Biochem 267:1280–1289

    Article  CAS  PubMed  Google Scholar 

  • Tishkov VI, Galkin AG, Marchenko GN, Egorova OA, Sheluho DV, Kulakova LB, Dementieva LA, Egorov AM (1993) Catalytic properties and stability of a Pseudomonas sp. 101 formate dehydrogenase mutants containing Cys-255-Ser and Cys-255-Met replacements. Biochem Biophys Res Commun 192:976–981

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Matsuyama A, Kobayashi Y, Kawada N (1995) Purification and characterization of (S)-1,3-butanediol dehydrogenase from Candida parapsilosis. Biosci Biotechnol Biochem 59:1769–1770

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Matsuyama A, Kobayashi Y (2002) Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Biosci Biotechnol Biochem 66:481–483

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Matsuyama A, Kobayashi Y (2003) Synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate using fabG-homologues. Appl Microbiol Biotechnol 61:133–139

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Mitsuhashi K, Kimoto N, Matsuyama A, Esaki N, Kobayashi Y (2004) A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and comparison of NADH-regeneration systems for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate. Biosci Biotechnol Biochem 68:638–649

    Article  CAS  PubMed  Google Scholar 

  • Wichmann R, Wandrey C, Buckmann AF, Kula MR (1981) Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Biotechnol Bioeng 23:2789–2802

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, H., Mitsuhashi, K., Kimoto, N. et al. Robust NADH-regenerator: improved α-haloketone-resistant formate dehydrogenase. Appl Microbiol Biotechnol 67, 33–39 (2005). https://doi.org/10.1007/s00253-004-1728-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1728-x

Keywords

Navigation