Skip to main content
Log in

Enhanced production of lactococcin 972 in chemostat cultures

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactococcus lactis subsp. lactis IPLA972 is a wild lactococcal strain suitable as a single starter in the manufacture of dairy products. This strain synthesizes lactococcin 972 (Lcn972), a unique bacteriocin that blocks septum formation. In this work, we report on the conditions to optimize biomass and Lcn972 production. In batch cultures, pH 6.8 was found to be optimum for bacteriocin synthesis and both glucose and lactose supported Lcn972 production. The inhibitory activity improved up to eight-fold with increasing carbohydrate concentration. In chemostat cultures, steady states were achieved even at dilution rates higher than μ max, due to the strong wall growth. Lcn972 behaved as a true primary metabolite, as it was maximally produced when the cells were actively growing. Bacteriocin yields were improved up to ten-fold in chemostat cultures compared with those achieved in batch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bárcena JM, Siñeriz F, González de Llano D, Rodríguez A, Suárez JE (1998) Chemostat production of plantaricin C by Lactobacillus plantarum LL441. Appl Environ Microbiol 64:3512–3514

    PubMed  Google Scholar 

  • Biswas SR, Ray P, Johnson MC, Ray B (1991) Influence of growth conditions on the production of bacteriocin AcH by Pediococcus acidilactici H. Appl Environ Microbiol 57:1265–1267

    Google Scholar 

  • Cachon R, Divies C (1993) Modelling of growth and lactate fermentation by Lactococcus lactis subsp. lactis biovar. diacetylactis in batch culture. Appl Microbiol Biotechnol 40:28–33

    CAS  Google Scholar 

  • Cárcoba R, Delgado T, Rodríguez A (2000) Comparative performance of a mixed strain starter in cow’s milk, ewe’s milk and mixtures of these milks. Eur Food Res Technol 211:141–146

    Article  Google Scholar 

  • Chandrapati S, O’Sullivan DJ (2002) Characterization of the promoter regions involved in galactose- and nisin-mediated induction of the nisA gene in Lactococcus lactis ATCC 11454. Mol Microbiol 46:467–477

    Article  CAS  PubMed  Google Scholar 

  • Cheigh CI, Choi HJ, Oark H, Kim SB, Kook MC, Kim TS, Hwang JK, Pyun YR (2002) Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J Biotechnol 95:225–235

    Article  CAS  PubMed  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RE, Hugenholtz J (1996) Applications of the bacteriocin nisin. Antonie van Leeuwenhoek 69:193–202

    CAS  PubMed  Google Scholar 

  • Gasson MJ (1983) Transfer of sucrose fermenting ability, nisin resistance and nisin production in Streptococcus lactis 712. FEMS Microbiol Lett 21:7–10

    Article  Google Scholar 

  • González de Llano D, Rodriguez A, Cuesta P (1996) Effect of lactic starter cultures on the organic acid composition of milk and cheese during ripening-analysis by HPLC. J Appl Bacteriol 80:570–576

    Google Scholar 

  • Guerra NP, Rua ML, Pastrana L (2001) Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int J Food Microbiol 70:267–281

    Article  CAS  PubMed  Google Scholar 

  • Kaiser AL, Monteville TJ (1993) The influence of pH and growth rate on the production of the bacteriocin bavaricin MN in batch and continuous fermentation. J Appl Bacteriol 75:536–540

    Google Scholar 

  • Leal-Sánchez MV, Jímenez-Díaz R, Maldonado-Barragán A, Garrido-Fernández A, Ruiz-Barba JL (2002) Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl Environ Microbiol 68:4465–4471

    Article  PubMed  Google Scholar 

  • Leroy F, Vuyst L de (1999) The presence of salt and a curing agent reduces bacteriocin production by Lactobacillus sakei CTC494, a potential starter culture for sausage fermentation. Appl Environ Microbiol 65:5350–5356

    CAS  PubMed  Google Scholar 

  • Loubiere P, Cocaign-Bousquet M, Matos J, Goma G, Lindley MD (1997) Influence of end-products inhibition and nutrient limitations on the growth of Lactococcus lactis subsp. lactis. J Appl Microbiol 82:95–100

    CAS  Google Scholar 

  • Martínez B, Suárez JE, Rodríguez A (1995) Antimicrobials produced by wild lactococcal strains isolated from homemade cheeses. J Food Prot 58:1118–1123

    Google Scholar 

  • Martínez B, Suárez JE, Rodriguez A (1996) Lactococcin 972, a homodimeric lactococcal bacteriocin whose primary target is not the plasma membrane. Microbiology 142:2393–2398

    Google Scholar 

  • Martínez B, Rodríguez A, Suárez JE (2000) Lactococcin 972, a bacteriocin that inhibits septum formation in lactococci. Microbiology 146: 949–955

    PubMed  Google Scholar 

  • Meghrous J, Huot M, Quittelier M, Petitdemange H (1992) Regulation of nisin biosynthesis by continuous cultures and by resting cells of Lactococcus lactis subsp. lactis. Res Microbiol 143:879–890

    Article  CAS  PubMed  Google Scholar 

  • Nes IF, Diep BD, Havarstein LS, Brurberg MB, Eisink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70:113–128

    CAS  PubMed  Google Scholar 

  • Parente E, Ricciardi A (1999) Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl Microbiol Biotechnol 52:628–638

    Article  CAS  PubMed  Google Scholar 

  • Parente E, Brienza C, Ricciardi A, Addario G (1997) Growth and bacteriocin production by Enterococcus faecium DPC1146 in batch and continuous culture. J Ind Microbiol Biotechnol 18:62–67

    Article  CAS  PubMed  Google Scholar 

  • Rilla N, Martínez B, Delgado T, Rodríguez A (2003) Inhibition of Clostridium tyrobutyricum in Vidiago cheese by Lactococcus lactis ssp. lactis IPLA729, a nisin Z producer. Int J Food Microbiol 85:23–33

    Article  CAS  PubMed  Google Scholar 

  • Ross RP, Galvin M, McAuliffe O, Morgan SM, Ryan MP, Twomey DP, Meaney WJ, Collin H (1999) Developing applications for lactococcal bacteriocins. Antonie van Leeuwenhoek 76:337–346

    Article  CAS  PubMed  Google Scholar 

  • Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16

    Article  PubMed  Google Scholar 

  • Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 70:331–345

    CAS  Google Scholar 

  • Thompson J, Gentry-Weeks CR (1994) Métabolisme des sucres par les bactéries lactiques. In: De Roissart H, Luquet FM (eds) Bactéries lactiques. Uriage, Paris, pp 239–290

  • Uguen P, Hamelin J, Le Pennec JP, Blanco C (1999) Influence of osmolarity and the presence of an osmoprotectant on Lactococcus lactis growth and bacteriocin production. Appl Environ Microbiol 65:291–293

    CAS  PubMed  Google Scholar 

  • Zamfir M, Callewaert R, Cornea PC, De Vuyst L (2000) Production kinetics of acidophilin 801, a bacteriocin produced by Lactobacillus acidophilus IBB 801. FEMS Microbiol Lett 190:305–308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Ministerio de Ciencia y Tecnología of Spain (grant AGL2000-1611-CO3-02). A.H. was the recipient of a predoctoral fellowship from the Fundación para el Fomento de la Investigación Científica y la Tecnología (grant PB-EXP01-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Rojas, A.H., Martínez, B., Suárez, J.E. et al. Enhanced production of lactococcin 972 in chemostat cultures. Appl Microbiol Biotechnol 66, 48–52 (2004). https://doi.org/10.1007/s00253-004-1661-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1661-z

Keywords

Navigation