Skip to main content
Log in

Streptomyces lividans and Brevibacterium lactofermentum as heterologous hosts for the production of X22 xylanase from Aspergillus nidulans

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Aspergillus nidulans gene xlnA coding for the fungal xylanase X22 has been cloned and expressed in two heterologous bacterial hosts: Streptomyces lividans and Brevibacterium lactofermentum. Streptomyces strains yielded 10 units/ml of xylanase when the protein was produced with its own signal peptide, and 19 units/ml when its signal peptide was replaced by the one for xylanase Xys1 from Streptomyces halstedii. B. lactofermentum was also able to produce xylanase X22, affording 6 units/ml upon using either the Aspergillus xlnA signal peptide or Streptomyces xysA. These production values are higher than those previously reported for the heterologous expression of the A. nidulans xlnA gene in Saccharomyces cerevisiae (1 unit/ml). Moreover, the X22 enzyme produced by Streptomyces lividans showed oenological properties, indicating that this Streptomyces recombinant strain is a good candidate for the production of this enzyme at the industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–d

Similar content being viewed by others

References

  • Adham SA, Campelo AB, Ramos A, Gil JA (2001a) Construction of a xylanase-producing strain of Brevibacterium lactofermentum by stable integration of an engineered xysA gene from Streptomyces halstedii JM8. Appl Environ Microbiol 67:5425–5430

    Google Scholar 

  • Adham SA, Honrubia P, Díaz M, Fernández-Ábalos JM, Santamaría RI, Gil JA (2001b) Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch Microbiol 177:91–97

    Article  CAS  PubMed  Google Scholar 

  • Adham SA, Rodríguez S, Ramos A, Santamaría RI, Gil JA (2003) Improved vectors for transcriptional/translational signal screening in corynebacteria using the melC operon from Streptomyces glaucescens as reporter. Arch Microbiol 180:53–59

    Article  CAS  PubMed  Google Scholar 

  • Anne J, Van Mellaert L (1993) Streptomyces lividans as host for heterologous protein production. FEMS Microbiol Lett 114:121–128

    Article  CAS  PubMed  Google Scholar 

  • Beki E, Nagy I, Vanderleyden J, Jager S, Kiss L, Fulop L, Hornok L, Kukolya J (2003) Cloning and heterologous expression of a beta-d-mannosidase (EC 3.2.1.25)-encoding gene from Thermobifida fusca TM51. Appl Environ Microbiol 69:1944–1952

    Article  CAS  PubMed  Google Scholar 

  • Bernfeld P (1951) Enzymes of starch degradation and synthesis. Adv Enzymol 12:379–428

    CAS  Google Scholar 

  • Biely P, Markovic O, Mislovicova D (1985) Sensitive detection of endo-1,4-beta-glucanases and endo-1,4-beta-xylanases in gels. Anal Biochem 144:147–151

    CAS  PubMed  Google Scholar 

  • Binnie C, Cossar JD, Stewart DI (1997) Heterologous biopharmaceutical protein expression in Streptomyces. Trends Biotechnol 15:315–320

    CAS  PubMed  Google Scholar 

  • Brawner M, Poste G, Rosenberg M, Westpheling J (1991) Streptomyces: a host for heterologous gene expression. Curr Opin Biotechnol 2:674–681

    CAS  PubMed  Google Scholar 

  • Fernández-Espinar MT, Ramón D, Piñaga F, Vallés S (1992) Xylanase production by Aspergillus nidulans. FEMS Microbiol Lett 91:91–96

    Article  Google Scholar 

  • Fernández-Espinar MT, Piñaga F, Sanz P, Ramón D, Valles S (1993) Purification and characterization of a neutral endoxylanase from Aspergillus nidulans. FEMS Microbiol Lett 113:223–228

    Article  Google Scholar 

  • Fernández-González C, Gil JA, Mateos LM, Schwarzer A, Schafer A, Kalinowski J, Puhler A, Martín JF (1996) Construction of l-lysine-overproducing strains of Brevibacterium lactofermentum by targeted disruption of the hom and thrB genes. Appl Microbiol Biotechnol 46:554–558

    Article  PubMed  Google Scholar 

  • Ganga MA (1997) Producción y caracterización de enzimas implicadas en la degradación de la pared celular vegetal y su expresión en levaduras vínicas. PhD thesis, Universitat de Valencia, Valencia

  • Ganga MA, Querol A, Vallés S, Ramón D, MacCabe A, Piñaga F (1998) Heterologous production in Saccharomyces cerevisiae of different Aspergillus nidulans xylanases of potential interest in oenology. J Sci Food Agric 1998:78315–78320

    Google Scholar 

  • Ganga MA, Pinaga F, Vallés S, Ramón D, Querol A (1999) Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Int J Food Microbiol 47:171–178

    Article  CAS  PubMed  Google Scholar 

  • Geueke B, Hummel W (2003) Heterologous expression of Rhodococcus opacus l-amino acid oxidase in Streptomyces lividans. Protein Expr Purif 28:303–309

    Article  CAS  PubMed  Google Scholar 

  • Gilbert M, Morosoli R, Shareck F, Kluepfel D (1995) Production and secretion of proteins by streptomycetes. Crit Rev Biotechnol 15:13–39

    CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983:166557–166580

    Google Scholar 

  • Isiegas C, Parro V, Mellado RP (1999) Streptomyces lividans as a host for the production and secretion of Escherichia coli TEM beta-lactamase. Lett Appl Microbiol 28:321–326

    Article  CAS  PubMed  Google Scholar 

  • Jager W, Schafer A, Puhler A, Labes G, Wohlleben W (1992) Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol 174:5462–5465

    CAS  PubMed  Google Scholar 

  • Kaneko H, Sakaguchi K (1979) Fusion of protoplast and genetic recombination of Brevibacterium flavum. Agric Biol Chem 1979:43867–43868

    Google Scholar 

  • Katz E, Thompson CJ, Hopwood DA (1983) Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol 129:2703–2714

    CAS  PubMed  Google Scholar 

  • Kieser T (1984) Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli. Plasmid 1984:1219–1236

    Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Centre, Norwich

  • MacCabe AP, Orejas M, Pérez-González JA, Ramón D (1998) Opposite patterns of expression of two Aspergillus nidulans xylanase genes with respect to ambient pH. J Bacteriol 180:1331–1333

    CAS  PubMed  Google Scholar 

  • MacCabe AP, Orejas M, Tamayo EN, Villanueva A, Ramón D (2002) Improving extracellular production of food-use enzymes from Aspergillus nidulans. J Biotechnol 96:43–54

    Article  CAS  PubMed  Google Scholar 

  • Mesas JM (1986) Characterization of asparaginase, aspartase and aspartokinase of Corynebacterium glutamicum. PhD thesis, Universidad de León, León

  • Orejas M, MacCabe AP, Pérez González JA, Kumar S, Ramón D (1999) Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Mol Microbiol 31:177–184

    Article  CAS  PubMed  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    CAS  PubMed  Google Scholar 

  • Pérez-González JA, De Graaff LH, Visser J, Ramón D (1996) Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes. Appl Environ Microbiol 62:2179–2182

    PubMed  Google Scholar 

  • Pico Y, Fernández M, Rodríguez R, Almudever J, Manes J, Font G, Marín R, Carda C, Manzanares P, Ramón D (1999) Toxicological assessment of recombinant xylanase X(22) in wine. J Agric Food Chem 47:1597–1602

    Article  CAS  PubMed  Google Scholar 

  • Piñaga F, Fernández-Espinar MT, Vallés S, Ramón D (1994) Xylanase production in Aspergillus nidulans: induction and carbon catabolite repression. FEMS Microbiol Lett 115:319–323

    CAS  Google Scholar 

  • Pozidis C, Lammertyn E, Politou AS, Anne J, Tsiftsoglou AS, Sianidis G, Economou A (2001) Protein secretion biotechnology using Streptomyces lividans: large-scale production of functional trimeric tumor necrosis factor alpha. Biotechnol Bioeng 72:611–619

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Arribas A, Fernández-Ábalos JM, Sánchez P, Garda AL, Santamaría RI (1995) Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Appl Environ Microbiol 61:2414–2419

    CAS  PubMed  Google Scholar 

  • Ruiz-Arribas A, Sánchez P, Calvete JJ, Raida M, Fernández-Ábalos JM, Santamaría RI (1997) Analysis of xysA, a gene from Streptomyces halstedii JM8 that encodes a 45-kilodalton modular xylanase, Xys1. Appl Environ Microbiol 63:2983–2988

    Google Scholar 

  • Salim K, Haedens V, Content J, Leblon G, Huygen K (1997) Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl Environ Microbiol 63:4392–4400

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fristsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sanchez-Torres P, Gonzalez-Candelas L, Ramon D (1998) Heterologous expression of a Candida molischiana anthocyanin-beta-glucosidase in a wine yeast strain. J Agric Food Chem 46:354–360

    Article  CAS  PubMed  Google Scholar 

  • Santamaría RI, Gil JA, Martín JF (1985) High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA. J Bacteriol 162:463–467

    CAS  PubMed  Google Scholar 

  • Schafer A, Kalinowski J, Simon R, Seep-Feldhaus AH, Puhler A (1990) High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol 172:1663–1666

    PubMed  Google Scholar 

  • Smith TJ, Lloyd JS, Gallagher SC, Fosdike WL, Murrell JC, Dalton H (1999) Heterologous expression of alkene monooxygenase from Rhodococcus rhodochrous B-276. Eur J Biochem 260:446–452

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Tremblay D, Lemay J, Gilbert M, Chapdelaine Y, Dupont C, Morosoli R (2002) High-level heterologous expression and secretion in Streptomyces lividans of two major antigenic proteins from Mycobacterium tuberculosis. Can J Microbiol 48:43–48

    Article  CAS  PubMed  Google Scholar 

  • Wely KH van, Swaving J, Freudl R, Driessen AJ (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454

    Article  PubMed  Google Scholar 

  • Wu YQ, Jiang PH, Fan CS, Wang JG, Shang L, Huang WD (2003) Co-expression of five genes in E. coli for l-phenylalanine in Brevibacterium flavum. World J Gastroenterol 9:342–346

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the European Union (FD1997-1134-C03). We thank R. Valle for her excellent technical work. Drs. J.M. Férnandez-Abalos and F. Leal are thanked for their comments. Thanks are also due to N. Skinner for supervising the English version of the manuscript. These experiments comply with the current laws in Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Santamaría.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, M., Adham, S.A.I., Ramón, D. et al. Streptomyces lividans and Brevibacterium lactofermentum as heterologous hosts for the production of X22 xylanase from Aspergillus nidulans . Appl Microbiol Biotechnol 65, 401–406 (2004). https://doi.org/10.1007/s00253-004-1633-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1633-3

Keywords

Navigation