Skip to main content
Log in

Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus oryzae is a fungus used extensively in the fermentation industry. We constructed cDNA microarrays comprising 2,070 highly expressed cDNAs selected from the ∼6,000 non-redundant expressed sequence tags (ESTs) in the A. oryzae EST database (http://www.aist.go.jp/RIODB/ffdb/index.html). Using the cDNA microarrays, we analyzed the gene expression profiles of A. oryzae cells grown under the glucose-rich (AC) and glucose-depleted (AN) liquid culture conditions used during the construction of the EST database. The sets of genes identified by the cDNA microarray as highly expressed under each culture condition agreed well with the highly redundant ESTs obtained under the same conditions. In particular, transcription levels of most catabolic genes of the glycolytic pathway (EMP) and tricarboxylic acid (TCA) cycle were higher under AC than AN conditions, suggesting that A. oryzae uses both EMP and TCA for glucose metabolism under AC conditions. We further studied the expression of genes encoding hydrolytic enzymes and enzymes involved in energy catabolism by using three industrial solid-phase biomass media, including wheat-bran. The wheat-bran culture gave the richest gene expression profile of hydrolytic enzymes and the lowest expression levels of catabolic genes (EMP, TCA) among the three media tested. The low expression levels of catabolic genes in the wheat-bran culture may release catabolite repression, consequently leading to the rich expression profiles of the hydrolytic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akao T, Gomi K, Goto K, Okazaki N, Akita O (2002) Subtract cloning of cDNA from Aspergillus oryzae differentially regulated between solid-state culture and liquid (submerged) culture. Curr Genet 41:275–281

    Article  CAS  PubMed  Google Scholar 

  • Azuma N, Suda H, Iwasaki H, Kanamoto R, Iwami K (1999) Soybean curd refuse alleviates experimental tumorigenesis in rat colon. Biosci Biotechnol Biochem 63:2256–2258

    CAS  PubMed  Google Scholar 

  • Barbesgaard P, Heldt-Hansen HP, Diderichsen B (1992) On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol 36:569–572

    CAS  PubMed  Google Scholar 

  • Cathala G, Savouret J-F, Mendez B, West BL, Karin M, Martial JA, Baxter JD (1983) A method for isolation of intact, translationally active ribonucleic acid. DNA 2:329–335

    CAS  PubMed  Google Scholar 

  • Chambergo FS, Bonaccorsi ED, Ferreira AJ, Ramos AS, Ferreira JR Jr, Abrahao-Neto J, Farah JP, El-Dorry H (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277:13983–13988

    Article  CAS  PubMed  Google Scholar 

  • Chigira Y, Abe K, Gomi K, Nakajima T (2002) chsZ, a gene for a novel class of chitin synthase from Aspergillus oryzae. Curr Genet 41:261–267

    Google Scholar 

  • Christensen T, Woeldike H, Boel E, Mortensen SB, Hjortshoejk K, Thim L, Hansen MT (1988) High-level expression of recombinant genes in Aspergillus oryzae. Biotechnology 6:1419–1422

    CAS  Google Scholar 

  • Couri S, da Costa Terzi S, Saavedra Pinto GA, Pereira Freitas S, Augusto da Costa AC (2000) Hydrolytic enzyme production in solid-state fermentation by Aspergillus niger 3T5B8. Process Biochem 36:255–261

    Article  CAS  Google Scholar 

  • Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CreA-mediated catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13:407–415

    CAS  PubMed  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    CAS  PubMed  Google Scholar 

  • Flipphi M, Mathieu M, Cirpus I, Panozzo C, Felenbok B (2001) Regulation of the aldehyde dehydrogenase gene (aldA) and its role in the control of the coinducer level necessary for induction of the ethanol utilization pathway in Aspergillus nidulans. J Biol Chem 276:6950–6958

    CAS  PubMed  Google Scholar 

  • Flipphi M, van de Vondervoort PJ, Ruijter GJ, Visser J, Arst NH Jr, Felenbok B (2003) Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. J Biol Chem 278:11849–11857

    Article  CAS  PubMed  Google Scholar 

  • Flores CL, Rodriguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24:507–529

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  PubMed  Google Scholar 

  • Gouka RJ, Punt P, van den Hondel CA (1997) Efficient production of secreted proteins by Aspergillus, progress, limitations, and prospects. Appl Microbiol Biotechnol 47:1–11

    CAS  PubMed  Google Scholar 

  • Hatamoto O, Sekine H, Nakano E, Abe K (1999) Cloning and expression of a cDNA encoding the laccase from Schizophyllum commune. Biosci Biotechnol Biochem 63:58–64

    CAS  PubMed  Google Scholar 

  • Jeenes DJ, Mackenzie B, Mackenzie DA, Archer DB (1991) A truncated glucoamylase gene fusion for heterologous protein secretion from Aspergillus niger. FEMS Microbiol Lett 107:267–271

    Article  Google Scholar 

  • Jones I, Fairhurst V, Sealy-Lewis HM (2001) ADHII in Aspergillus nidulans is induced by carbon starvation stress. Fungal Genet Biol 32:33–43

    Article  PubMed  Google Scholar 

  • Kelly J, Drysdale MR, Sealy-Lewis HM, Jones IG, Lockington RA (1990) Alcohol dehydrogenase III in Aspergillus nidulans is anaerobically induced and post-transcriptionally regulated. Mol Gen Genet 222:323–328

    CAS  PubMed  Google Scholar 

  • Klumberg P, Mathieu M, Dowzer CEA, Kelly JM, Felenbok B (1993) Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CreA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7:847–857

    PubMed  Google Scholar 

  • Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350

    PubMed  Google Scholar 

  • Machida M (2003) Progress of Aspergillus oryzae genomics. Genomics for fungi. Appl Microbiol 51:81–106

    Google Scholar 

  • Machida M, Chang YC, Manabe M, Yasukawa M, Kunihiro S, Jigami Y (1996) Molecular cloning a cDNA encoding enolase from the filamentous fungus, Aspergillus oryzae. Curr Genet 30:423–431

    Google Scholar 

  • Mod RR, Conkerton EJ, Ory RL, Normand FL (1978) Hemicellulose composition of dietary fiber of milled rice and rice bran. J Agric Food Chem 26:1031–1035

    Google Scholar 

  • Nakajima K, Kunihiro S, Sano M, Zhang Y, Eto S, Chang Y-C, Suzuki T, Jigami Y, Machida M (2000) Comprehensive cloning and expression analysis of glycolytic genes from the filamentous fungus, Aspergillus oryzae. Curr Genet 37:322–327

    Google Scholar 

  • Narahara H, Koyama Y, Yoshida T, Pichangkura S, Ueda R, Taguchi H (1982) Growth and enzyme production in solid-state culture of Aspergillus oryzae. J Ferment Technol 60:311–319

    CAS  Google Scholar 

  • Tailor MJ, Richardson T (1979) Applications of microbial enzymes in food systems and in biotechnology. Adv Appl Microbiol 25:7–35

    PubMed  Google Scholar 

  • Takahashi T, Chang P-K, Matsushima K, Yu J, Abe K, Bhatnagar D, Cleveland TE, Koyama Y (2002) Non-functionality of Aspergillus sojae aflR in a strain Aspergillus parasiticus with a disrupted aflR gene. Appl Environ Microbiol 68:3737–3743

    Google Scholar 

  • Tsuchiya K, Tada S, Gomi K, Kitamoto K, Kumagai C, Jigami Y, Tamura G (1992) High level expression of the synthetic human lysozyme gene in Aspergillus oryzae. Appl Microbiol Biotechnol 38:109–114

    CAS  PubMed  Google Scholar 

  • Tsuchiya K, Gomi K, Kitamoto K, Kumagai C, Tamura G (1993) Secretion of calf chymosin from the filamentous fungus Aspergillus oryzae. Appl Microbiol Biotechnol 40:327–332

    CAS  PubMed  Google Scholar 

  • Yu J, Proctor RH, Brown DW, Abe K, Gomi K, Machida M, Hasegawa F, Nierman WC, Bhatnagar D, Cleveland TE (2004) Genomics of economically significant Aspergillus and Fusarium species. In: Arora KD, Khachatourians GG (eds) Applied mycology and biotechnology, vol 4, Fungal genomics. Elsevier, Amsterdam, pp 249–283

  • Zeeman AM, Kuyper M, Pronk JT, van Dijken JP, Steensma HY (2000) Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 16:611–927

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant-in-aid (Proposal-based Energy/Environment International Joint Research Program) from the New Energy and Industrial Technology Development Organization (NEDO) of Japan as well as a grant-in-aid (Bio Design Program) from the Ministry of Agriculture, Forestry and Fisheries of Japan (BDP-03-VI-1-6). Hiroshi Maeda is supported in part by a grant-in-aid from Noda Institute for Scientific Research. We thank for Jiujiang Yu and Gary Payne for providing several cDNA clones. This manuscript is in memory of Makoto Watanabe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keietsu Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeda, H., Sano, M., Maruyama, Y. et al. Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags. Appl Microbiol Biotechnol 65, 74–83 (2004). https://doi.org/10.1007/s00253-004-1608-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1608-4

Keywords

Navigation