Skip to main content
Log in

Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To determine the function of the C-terminal region of Bacillus amyloliquefaciens phage endolysin on Pseudomonas aeruginosa lysis, the permeabilization of the outer membrane of P. aeruginosa was analyzed. Glu-15 to His (E15H) and Thr-32 to Glu (T32E) substitutions were introduced into the Bacillus phage endolysin. Neither E15H nor T32E substitution induced enzymatic and antibacterial activities. These two, Glu-15 and Thr-32, were considered to be the active center of the enzyme. The addition of purified E15H and T32E proteins to P. aeruginosa cells induced the release of periplasmic β-lactamase from the cells, indicating that both proteins enhance permeabilization of the outer membrane. However, the addition of E15H and T32E proteins to P. aeruginosa cells did not induce the release of cytoplasmic ATP from the cells. These results indicate that the antibacterial activity of the endolysin requires both the C-terminal enhancement of the permeabilization of the P. aeruginosa outer membrane and N-terminal enzymatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angus BL, Carey AM, Caron DA, Kropinski AMB, Hancock REW (1982) Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother 21:299–309

    CAS  PubMed  Google Scholar 

  • Bebrone C, Moali C, Mahy F, Rival S, Docquier JD, Rossolini GM, Jacques, F, Pratt RF, Frere JM, Galleni M (2001) CENTA as a chromogenic substrate for studying β-lactamase. Antimicrob Agents Chemother 45:1868–1871

    Article  CAS  PubMed  Google Scholar 

  • During K, Porsch P, Mahn A, Brinkmann O, Gieffers W (1999) The non-enzymatic microbicidal activity of lysozyme. FEBS Lett 449:93–100

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW (1997) The bacterial outer membrane as a drug barrier. Trends Microbiol 5:37–42

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–164

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 97:8856–8861

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Rozek A (2002) Role of membrane in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149

    Article  CAS  PubMed  Google Scholar 

  • Kuroki R, Weaver LH, Matthews BW (1999) Structural basis of the conversion of T4 lysozyme into a transglycosidase by reengineering the active site. Proc Natl Acad Sci U S A 96:8949–8954

    Article  CAS  PubMed  Google Scholar 

  • Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Tanji Y, Mizoguchi K, Soejima A, Orito Y, Unno H (2001a) Antibacterial activity of Bacillus amyloliquefaciens phage endolysin without holin conjugation. J Biosci Bioeng 88:221–225

    Google Scholar 

  • Morita M, Tanji Y, Orito Y, Mizoguchi K, Soejima A, Unno H (2001b) Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against Gram-negative bacteria. FEBS Lett 500:56–59

    Article  CAS  PubMed  Google Scholar 

  • Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A 98:4107–4112

    Article  CAS  PubMed  Google Scholar 

  • Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889

    Article  CAS  PubMed  Google Scholar 

  • Trias J, Dufresne J, Levesque RC, Nikaido H (1989) Decrease outer membrane permeability in imipenem-resistant mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 33:1201–1206

    CAS  Google Scholar 

  • Weisner B (1984) Esterases, glycosidases, lyases, ligases. In: Bergmeyer J, Grabl M (eds) Methods of enzymatic analysis, 3rd edn, vol IV. Verlag Chemie, Weinheim, Deerfield Beach Fla., pp. 189–194

  • Zhang L, Rozek A, Hancock REW (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276:35714–35722

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was financially supported in part by a grant (13450340) from the Japanese Ministry of Education, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tanji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orito, Y., Morita, M., Hori, K. et al. Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis. Appl Microbiol Biotechnol 65, 105–109 (2004). https://doi.org/10.1007/s00253-003-1522-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1522-1

Keywords

Navigation