Skip to main content

Advertisement

Log in

Chirality of pollutants—effects on metabolism and fate

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In most cases, enantiomers of chiral compounds behave differently in biochemical processes. Therefore, the effects and the environmental fate of the enantiomers of chiral pollutants need to be investigated separately. In this review, the different fates of the enantiomers of chiral phenoxyalkanoic acid herbicides, acetamides, organochlorines, and linear alkylbenzenesulfonates are discussed. The focus lies on biological degradation, which may be enantioselective, in contrast to non-biotic conversions. The data show that it is difficult to predict which enantiomer may be enriched and that accumulation of an enantiomer is dependent on the environmental system, the species, and the organ. Racemization and enantiomerization processes occur and make interpretation of the data even more complex. Enantioselective degradation implies that the enzymes involved in the conversion of such compounds are able to differentiate between the enantiomers. “Enzyme pairs” have evolved which exhibit almost identical overall folding. Only subtle differences in their active site determine their enantioselectivities. At the other extreme, there are examples of non-homologous “enzyme pairs” that have developed through convergent evolution to enantioselectively turn over the enantiomers of a chiral compound. For a better understanding of enantioselective reactions, more detailed studies of enzymes involved in enantioselective degradation need to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–F
Fig. 3A, B
Fig. 4A, B
Fig. 5

Similar content being viewed by others

References

  • Åberg B (1973) Plant growth regulators. XXXI. Some monochloro-monomethylphenoxy-acetic and related optically active propionic acids. Swed J Agric Res 3:49–62

    Google Scholar 

  • Ahrens WH (1994) Herbicide handbook (WSSA), 7th edn. Weed Science Society of America, Champaign

  • Aigner EJ, Leone AD, Falconer RL (1998) Concentrations and enantiomeric ratios of organochlorine pesticides in soils from the U.S. corn belt. Environ Sci Technol 32:1162–1168

    Article  CAS  Google Scholar 

  • Ariëns EJ (1983) Stereoselectivity of bioactive agents: general aspects. In: Ariëns EJ, Soudijn W, Timmermans PBMWM (eds) Stereochemistry and biological activity of drugs. Blackwell, Oxford, pp 11–32

  • Ariëns EJ (1989) Racemates—an impediment in the use of drugs and agrochemicals. In: Krstulovic AM (ed) Chiral separations by HPLC. Ellis Horwood, Chichester, pp 31–68

  • Ariëns EJ (1993) Nonchiral, homochiral and composite chiral drugs. Trends Pharmacol Sci 14:68–75

    CAS  PubMed  Google Scholar 

  • Bentley R (1995) From optical activity in quartz to chiral drugs: molecular handedness in biology and medicine. Perspect Biol Med 38:188–229

    CAS  PubMed  Google Scholar 

  • Bhat MA, Ishida T, Horiike K, Vaidyanathan CS, Nozaki M (1993) Purification of 3,5-dichlorocatechol 1,2-dioxygenase, a nonheme iron dioxygenase and a key enzyme in the biodegradation of a herbicide, 2,4-diochlorophenoxyacetic acid (2,4-D), from Pseudomonas cepacia CSV90. Arch Biochem Biophys 300:738–746

    Article  CAS  PubMed  Google Scholar 

  • Bucheli TD, Müller SR, Heberle S, Schwarzenbach RP (1998a) Occurrence and behavior of pesticides in rainwater, roof runoff, and artificial stormwater infiltration. Environ Sci Technol 32:3457–3464

    Article  CAS  Google Scholar 

  • Bucheli TD, Müller SR, Voegelin A, Schwarzenbach RP (1998b) Bituminous roof sealing membranes as major sources of the herbicide (R,S)-mecoprop in roof runoff waters: potential contamination of groundwater and surface waters. Environ Sci Technol 32:3465–3471

    Article  CAS  Google Scholar 

  • Buchenauer H (1990) Phenylamides. In: Haug G, Hoffmann D (eds) Chemistry of plant protection. Springer, Berlin Heidelberg New York, pp 234–238

  • Buerge IJ, Poiger T, Müller MD, Buser H-R (2003) Enantioselective degradation of metalaxyl in soils: chiral preference changes with soil pH. Environ Sci Technol 37:2668–2674

    Article  CAS  PubMed  Google Scholar 

  • Buser H-R, Müller MD (1995a) Environmental behavior of acetamide pesticide stereoisomers. 1. Stereo- and enantioselective determination using chiral high-resolution gas chromatography and chiral high-performance liquid chromatography. Environ Sci Technol 29:2023–2030

    CAS  Google Scholar 

  • Buser H-R, Müller MD (1995b) Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage sludge under anaerobic conditions. Environ Sci Technol 29:664–672

    CAS  Google Scholar 

  • Buser H-R, Müller MD (1997) Conversion reactions of various phenoxyalkanoic acid herbicides in soil. 2. Elucidation of the enantiomerization process of chiral phenoxy acids from incubation in a D2O/soil system. Environ Sci Technol 31:1960–1967

    Article  CAS  Google Scholar 

  • Buser H-R, Poiger T, Müller MD (2000) Changed enantiomer composition of metalochlor in surface water following the introduction of the enantiomerically enriched product to the market. Environ Sci Technol 34:2690–2696

    Article  CAS  Google Scholar 

  • Buser H-R, Müller MD, Poiger T, Balmer ME (2002) Environmental behavior of the chiral acetamide pesticide metalaxyl: enantioselective degradation and chiral stability in soil. Environ Sci Technol 36:221–226

    Article  CAS  PubMed  Google Scholar 

  • Chesters G, Simsiman GV, Levy J, Alhajjar BJ, Fathulla RN, Harkin JM (1989) Environmental fate of alachlor and metolachlor. Rev Environ Contam Toxicol 110:1–74

    CAS  PubMed  Google Scholar 

  • De Almeida JLG, Dufaux M, Ben Taarit Y, Naccache C (1994) Linear alkylbenzene. J Am Oil Chem Soc 71:675–694

    Google Scholar 

  • Dearth MA, Hites RA (1991) Complete analysis of technical chlordane using negative ionization mass spectrometry. Environ Sci Technol 25:245–254

    CAS  Google Scholar 

  • Donaldson D, Kiely T, Grube A (2002) 1998 and 1999 market estimates. In: EPA (ed) Pesticides industry sales and usage. EPA, Washington, D.C., pp 1–32

  • Douros JD, Frankenfeld JW (1968) Oxidation of alkylbenzenes by a strain of Micrococcus cerificans growing on n-paraffins. Appl Environ Microbiol 16:532–533

    CAS  Google Scholar 

  • Easson LH, Stedman E (1933) Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological activity. Biochem J 27:1257–1266

    CAS  Google Scholar 

  • Ehrig A, Müller RH, Babel W (1997) Isolation of phenoxy herbicide-degrading Rhodoferax species from contaminated building material. Acta Biotechnol 17:351–356

    Google Scholar 

  • Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York

  • Ensley BD, Gibson DT (1983) Naphthalene dioxygenase: purification and properties of a terminal oxygenase component. J Bacteriol 155:505–511

    CAS  PubMed  Google Scholar 

  • Ensley BD, Gibson DT, Laborde AL (1982) Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J Bacteriol 149:948–954

    CAS  PubMed  Google Scholar 

  • Falconer RL, Bidleman TF, Gregor DJ, Semkin R, Teixeira C (1995) Enantioselective breakdown of α-hexachlorocyclohexane in a small arctic lake and its watershed. Environ Sci Technol 29:1297–1302

    CAS  Google Scholar 

  • Falconer RL, Bidleman TF, Szeto SY (1997) Chiral pesticides in soils of the Fraser Valley, British Columbia. J Agric Food Chem 45:1946–1951

    Article  CAS  Google Scholar 

  • Farhana L, New PB (1997) The 2,4-dichlorophenol hydroxylase of Alcaligenes eutrophus JMP134 is a homotetramer. Can J Microbiol 43:202–205

    CAS  PubMed  Google Scholar 

  • FDA (1992) FDA’s policy statement for the development of new stereoisomeric drugs. Chirality 4:338–340

    PubMed  Google Scholar 

  • Felding G (1995) Leaching of phenoxyalkanoic acid herbicides from farmland. Sci Total Environ 168:11–18

    Article  CAS  Google Scholar 

  • Fisher DJ, Hayes AL (1985) A comparison of the biochemical and physiological effects of the systemic fungicide cyprofuram with those of the related compounds metalaxyl and metolachlor. Crop Protect 4:501–510

    Article  CAS  Google Scholar 

  • Fukumori F, Hausinger RP (1993a) Alcaligenes eutrophus JMP134 “2,4-dichlorophenoxyacetate monooxygenase” is a α-ketoglutarate-dependent dioxygenase. J Bacteriol 175:2083–2096

    CAS  PubMed  Google Scholar 

  • Fukumori F, Hausinger RP (1993b) Purification and characterization of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase. J Biol Chem 268:24311–24317

    CAS  PubMed  Google Scholar 

  • Garrison AW, Schmitt P, Martens D, Kettrup A (1996) Enantiomeric selectivity in the environmental degradation of dichlorprop as determined by high-performance capillary electrophoresis. Environ Sci Technol 30:2249–2455

    Article  Google Scholar 

  • Gintautas PA, Daniel SR, Macalady DL (1992) Phenoxyalkanoic acid herbicides in municipal landfill leachates. Environ Sci Technol 26:517–521

    CAS  Google Scholar 

  • Goldberg JD, Yoshida T, Brick P (1994) Crystal structure of a NAD-dependent d-glycerate dehydrogenase at 2.4 Å resolution. J Mol Biol 236:1123–1140

    CAS  PubMed  Google Scholar 

  • Gupta A, Kaushik CP, Kaushik A (2001) Degradation of hexachlorocyclohexane isomers by two strains of Alcaligenes faecalis isolated from a contaminated site. Bull Environ Contam Toxicol 66:794–800

    CAS  PubMed  Google Scholar 

  • Haigler BE, Gibson DT (1990) Purification and properties of ferredoxinNAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Bacteriol 172:465–468

    CAS  PubMed  Google Scholar 

  • Harner T, Kylin H, Bidleman TF, Strachan WM (1999) Removal of α- and γ-hexachlorocyclohexane in the Eastern Arctic ocean. Environ Sci Technol 33:1157–1164

    Article  CAS  Google Scholar 

  • Hayes WJ, Laws ER (1991) Classes of pesticides. Academic Press, San Diego

  • Hegeman WJM, Laane RWPM (2002) Enantiomeric enrichment of chiral pesticides in the environment. Rev Environ Contam Toxicol 173:85–116

    PubMed  Google Scholar 

  • Hegg EL, Que L Jr. (1997) The 2-His-1-carboxylate facial triad—an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur J Biochem 250:625–629

    CAS  PubMed  Google Scholar 

  • Heron G, Christensen TH (1992) Degradation of the herbicide mecoprop in an aerobic aquifer determined by laboratory batch studies. Chemosphere 24:547–557

    CAS  Google Scholar 

  • Hisano T, Hata Y, Fujii T, Liu JQ, Kurihara T, Esaki N, Soda K (1996) Crystal structure of l-2-haloacid dehalogenase from Pseudomonas sp. YL. An α/β hydrolase structure that is different from the α/β hydrolase fold. J Biol Chem 271:20322–20330

    Article  CAS  PubMed  Google Scholar 

  • Holt MS, Bernstein SL (1992) Linear alkylbenzenes in sewage sludges and sludge amended soils. Water Res 26:613–624

    Article  CAS  Google Scholar 

  • Horvath M, Ditzelmüller G, Loidl M, Streichsbier F (1990) Isolation and characterization of a 2-(2,4-dichlorophenoxy)propionic acid degrading soil bacterium. Appl Microbiol Biotechnol 33:213–216

    CAS  PubMed  Google Scholar 

  • Huddleston RL, Allred RC (1963) Microbial oxidation of sulfonated alkylbenzenes. Dev Ind Microbiol 4:24–38

    Google Scholar 

  • Hudlicky T, Gonzales D, Gibson DT (1999) Enzymatic dihydroxylation of aromatics in enantioselective synthesis: expanding asymmetric methodology. Aldrichim Acta 32:53–62

    Google Scholar 

  • Hühnerfuss H, Faller J, König WA, Ludwig P (1992) Gas chromatographic separation of the enantiomers of marine pollutants. 4. Fate of hexachlorocyclohexane isomers in the Baltic and North sea. Environ Sci Technol 26:2127–2133

    Google Scholar 

  • Hühnerfuss H, Faller J, Kallenborn R, König WA, Ludwig P, Pfaffenberger B, Oehme M, Rimkus G (1993) Enantioselective and nonenantioselective degradation of organic pollutants in the marine ecosystem. Chirality 5:393–399

    PubMed  Google Scholar 

  • Hummert K, Vetter W, Luckas B (1995) Levels of alpha-HCH, lindane, and enantiomeric ratios of alpha-HCH in marine mammals from the northern hemisphere. Chemosphere 31:3489–3500

    Article  CAS  PubMed  Google Scholar 

  • Imai R, Nagata Y, Fukuda M, Takagi M, Yano K (1991) Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from γ-hexachlorocyclohexane. J Bacteriol 173:6811–6819

    CAS  PubMed  Google Scholar 

  • Iwata H, Tanabe S, Sakal N, Tatsukawa R (1993) Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ Sci Technol 27:1080–1098

    CAS  Google Scholar 

  • Jantunen LMM, Bidleman TF (1998) Organochlorine pesticides and enantiomers of chiral pesticides in Arctic ocean water. Arch Environ Contam Toxicol 35:218–228

    Article  CAS  PubMed  Google Scholar 

  • Kallarakal AT, Mitra B, Kozarich JW, Gerlt JA, Clifton JG, Petsko GA, Kenyon GL (1995) Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the K166R mutant. Biochemistry 34:2788–2797

    CAS  PubMed  Google Scholar 

  • Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299:1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure 6:571–586

    CAS  PubMed  Google Scholar 

  • Kenyon GL, Hegeman GD (1979) Mandelate racemase. Adv Enzymol Relat Areas Mol Biol 50:325–360

    CAS  PubMed  Google Scholar 

  • Kleinsteuber S, Hoffmann D, Müller RH, Babel W (1998) Detection of chlorocatechol 1,2-dioxygenase genes in Proteobacteria by PCR and gene probes. Acta Biotechnol 18:231–240

    CAS  Google Scholar 

  • Kohler H-PE (1999) Sphingomonas herbicidovorans MH: a versatile phenoxyalkanoic herbicide degrader. J Ind Microbiol Biotechnol 23:336–340

    Article  CAS  PubMed  Google Scholar 

  • Kohler H-PE, Angst W, Giger W, Kranz C, Müller S, Suter MJ-F (1997) Environmental fate of chiral pollutants—the necessity of considering stereochemistry. Chimia 51:947–951

    CAS  Google Scholar 

  • Kohler H-P, Nickel K, Zipper C (2000) Effect of chirality on the microbial degradation and the environmental fate of chiral pollutants. In: Schink B (ed) Advances in microbial ecology. Kluwer, New York, pp 201–231

  • Kuhm AE, Schlömann M, Knackmuss HJ, Pieper DH (1990) Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. Biochem J 266:877–883

    CAS  PubMed  Google Scholar 

  • Kurihara T, Liu JQ, Nardi-Dei V, Koshikawa H, Esaki N, Soda K (1995) Comprehensive site-directed mutagenesis of l-2-halo acid dehalogenase to probe catalytic amino acid residues. J Biochem (Tokyo) 117:1317–1322

    Google Scholar 

  • Lamzin VS, Dauter Z, Wilson KS (1994) Dehydrogenation through the looking-glass. Nat Struct Biol 1:281–282

    PubMed  Google Scholar 

  • Landro JA, Kallarakal AT, Ransom SC, Gerlt JA, Kozarich JW, Neidhart DJ, Kenyon GL (1991) Mechanism of the reaction catalyzed by mandelate racemase. 3. Asymmetry in reactions catalyzed by the H297N mutant. Biochemistry 30:9274–9281

    CAS  PubMed  Google Scholar 

  • Landro JA, Gerlt JA, Kozarich JW, Koo CW, Shah VJ, Kenyon GL, Neidhart DJ, Fujita S, Petsko GA (1994) The role of lysine 166 in the mechanism of mandelate racemase from Pseudomonas putida: mechanistic and crystallographic evidence for stereospecific alkylation by (R)-α-phenylglycidate. Biochemistry 33:635–643

    CAS  PubMed  Google Scholar 

  • Law SA, Diamond ML, Helm PA, Jantunen LM, Alaee M (2001) Factors affecting the occurrence and enantiomeric degradation of hexachlorocyclohexane isomers in northern and temperate aquatic systems. Environ Toxicol Chem 20:2690–2698

    CAS  PubMed  Google Scholar 

  • LeBaron H, McFarland JE, Simoneaux BJ, Ebert E (1988) Metolachlor. In: Kearney PC, Kaufman DD (eds) Herbicides. Chemistry, degradation and mode of action. Dekker, New York, pp 335–382

  • Lewis DL, Garrison AW, Wommack KE, Whittemore A, Steudler P, Melillo J (1999) Influence of environmental changes on degradation of chiral pollutants in soils. Nature 401:898–901

    Article  CAS  PubMed  Google Scholar 

  • Li Y-F, Hata Y, Fujii T, Hisano T, Nishihara M, Kurihara T, Esaki N (1998) Crystal structures of reaction intermediates of l-2-haloacid dehalogenase and implications for the reaction mechanism. J Biol Chem 273:15035–15044

    Article  CAS  PubMed  Google Scholar 

  • Liu J-Q, Kurihara T, Miyagi M, Esaki N, Soda K (1995) Reaction mechanism of l-2-haloacid dehalogenase of Pseudomonas sp. YL. Identification of Asp10 as the active site nucleophile by 18O incorporation experiments. J Biol Chem 270:18309–18312

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Chapman PJ (1984) Purification and properties of a plasmid-encoded 2,4-dichlorophenol hydroxylase. FEBS Lett 173:314–318

    Article  CAS  PubMed  Google Scholar 

  • Loos MA (1975) Phenoxyalkanoic acids. In: Kearney PC, Kaufmann DD (eds) Herbicides. Chemistry, degradation and mode of action, 2nd edn. Dekker, New York, pp 1–128

  • Ludwig P, Gunkel W, Hühnerfuss H (1992a) Chromatographic separation of the enantiomers of marine pollutants. Part 5: enantioselective degradation of phenoxycarboxylic acid herbicides by marine microorganisms. Chemosphere 24:1423–1429

    Article  CAS  Google Scholar 

  • Ludwig P, Hühnerfuss H, König WA, Gunkel W (1992b) Gas chromatographic separation of the enantiomers of marine pollutants. Part 3. Enantioselective degradation of α-hexachlorocyclohexane and γ-hexachlorocyclohexane by marine microorganisms. Mar Chem 38:13–23

    Article  CAS  Google Scholar 

  • Lyngkilde J, Christensen TH (1992) Fate of organic contaminants in the redox zone of a landfill leachate pollution plume. J Contam Hydrol 10:291–307

    CAS  Google Scholar 

  • Manonmani HK, Chandrashekaraiah DH, Sreedhar Reddy N, Elcey CD, Kunhi AAM (2000) Isolation and acclimation of a microbial consortium for improved aerobic degradation of α-hexachlorocyclohexane. J Agric Food Chem 48:4341–4351

    Article  CAS  PubMed  Google Scholar 

  • Marucchini C, Zadra C (2002) Stereoselective degradation of metalaxyl and metalaxyl-M in soil and sunflower plants. Chirality 14:32–38

    Article  CAS  PubMed  Google Scholar 

  • Matell M (1953) Stereochemical studies on plant growth regulators. VII. Optically active α-(2-methyl-4-chlorophenoxy)-propionic acid and α-(2,4-dichlorophenoxy)-n-butyric acid and their steric relations. Ark Kemi 6:365–373

    CAS  Google Scholar 

  • Meharg AA, Wright J, Leeks GJL, Wass PD, Osborn D (1999) Temporal and spatial patterns in α- and γ-hexachlorocyclohexane concentrations in industrially contaminated rivers. Environ Sci Technol 33:2001–2006

    Article  CAS  Google Scholar 

  • Meijer SN, Halsall CJ, Harner T, Peters AJ, Ockenden WA, Johnston AE, Jones KC (2001) Organochlorine pesticide residues in archived UK soil. Environ Sci Technol 35:1989–1995

    Article  CAS  PubMed  Google Scholar 

  • Mesecar AD, Koshland DE Jr (2000) A new model for protein stereospecificity. Nature 403:614–615

    Article  CAS  Google Scholar 

  • Middeldorp PJM, Jaspers M, Zehnder AJB, Schraa G (1996) Biotransformation of α-, β-, γ-, and δ-hexachlorocyclohexane under methanogenic conditions. Environ Sci Technol 30:2345–2349

    Article  CAS  Google Scholar 

  • Milton RC de L, Milton SC, Kent SBH (1992) Total chemical synthesis of a d-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity. Science 256:1445–1448

    CAS  PubMed  Google Scholar 

  • Moisey J, Fisk AT, Hobson KA, Norstrom RJ (2001) Hexachlorocyclohexane (HCH) isomers and chiral signatures of α-HCH in the Arctic marine food web of the northwater polynya. Environ Sci Technol 35:1920–1927

    Article  CAS  PubMed  Google Scholar 

  • Monkiedje A, Spiteller M, Bester K (2003) Degradation of racemic and enantiopure metalaxyl in tropical and temperate soils. Environ Sci Technol 37:707–712

    Article  CAS  PubMed  Google Scholar 

  • Müller MD, Buser H-R (1995) Environmental behavior of acetamide pesticide stereoisomers. 2. Stereo- and enantioselective degradation in sewage sludge and soil. Environ Sci Technol 29:2031–2037

    Google Scholar 

  • Müller MD, Buser H-R (1997) Conversion reactions of various phenoxyalkanoic acid herbicides in soil. 1. Enantiomerization and enantioselective degradation of the chiral 2-phenoxypropionic acid herbicides. Environ Sci Technol 31:1953–1959

    Article  Google Scholar 

  • Müller MD, Schlabach M, Oehme M (1992) Fast and precise determination of α-hexachlorocyclohexane enantiomers in environmental samples using chiral high-resolution gas chromatography. Environ Sci Technol 26:566–569

    Google Scholar 

  • Müller RH, Jorks S, Kleinsteuber S, Babel W (1999) Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA. Microbiol Res 154:241–246

    PubMed  Google Scholar 

  • Müller RH, Kleinsteuber S, Babel W (2001) Physiological and genetic characteristics of two bacterial strains utilizing phenoxypropionate and phenoxyacetate herbicides. Microbiol Res 156:121–131

    CAS  PubMed  Google Scholar 

  • Müller TA, Byrde S, Fleischmann T, Meer JR van der, Kohler H-PE (2003) Genetic analysis chiral phenoxyalkanoic acid herbicides degradation in Sphingomonas herbicidovorans MH. (in preparation)

  • Nagasawa S, Kikuchi R, Nagata Y, Takagi M, Matsuo M (1993) Aerobic mineralization of γ-HCH by Pseudomonas paucimobilis UT26. Chemosphere 26:1719–1728

    Article  CAS  Google Scholar 

  • Nagata Y, Imai R, Sakai A, Fukuda M, Yano K, Takagi M (1993a) Isolation and characterization of Tn5-induced mutants of Pseudomonas paucimobilis UT26 defective in γ-hexachlorocyclohexane dehydrochlorinase (LinA). Biosci Biotechnol Biochem 57:703–709

    CAS  PubMed  Google Scholar 

  • Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K, Takagi M (1993b) Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of γ-hexachlorocyclohexane in Pseudomonas paucimobilis. J Bacteriol 175:6403–6410

    CAS  PubMed  Google Scholar 

  • Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Biol Biotechnol 23:380–390

    Article  CAS  Google Scholar 

  • Nakajima K, Yamashita A, Akama H, Nakatsu T, Kato H, Hashimoto T, Oda J, Yamada Y (1998) Crystal structure of two tropinone reductases: different reaction stereospecificities in the same protein fold. Proc Natl Acad Sci USA 95:4876–4881

    CAS  PubMed  Google Scholar 

  • Nardi-Dei V, Kurihara T, Park C, Esaki N, Soda K (1997) Bacterial dl-2-haloacid dehalogenase from Pseudomonas sp. strain 113: gene cloning and structural comparison with d- and l-2-haloacid dehalogenases. J Bacteriol 179:4232–4238

    CAS  PubMed  Google Scholar 

  • Nawab A, Aleem A, Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Bioresour Technol 88:41–46

    Article  CAS  PubMed  Google Scholar 

  • Neidhart DJ, Howell PL, Petsko GA, Powers VM, Li RS, Kenyon GL, Gerlt JA (1991) Mechanism of the reaction catalyzed by mandelate racemase. 2. Crystal structure of mandelate racemase at 2.5-Å resolution: identification of the active site and possible catalytic residues. Biochemistry 30:9264–9273

    CAS  PubMed  Google Scholar 

  • Ngabe B, Bidleman TF, Falconer RL (1993) Base hydrolysis of α- and γ-hexachlorocyclohexanes. Environ Sci Technol 27:1930–1933

    CAS  Google Scholar 

  • Nickel K, Suter MJ-F, Kohler H-PE (1997) Involvement of two α-ketoglutarate-dependent dioxygenases in enantioselective degradation of (R)- and (S)-mecoprop by Sphingomonas herbicidovorans MH. J Bacteriol 179:6674–6679

    CAS  PubMed  Google Scholar 

  • Nitschke L, Wilk A, Schüsseler W, Metzner G, Lind G (1999) Biodegradation in laboratory activated sludge plants and aquatic toxicity of herbicides. Chemosphere 39:2313–2323

    Article  CAS  PubMed  Google Scholar 

  • Ogston AG (1948) Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature 162:963

    CAS  Google Scholar 

  • Painter HA (1992) Anionic surfactants. In: Oude NT de (ed) The handbook of environmental chemistry. Springer, Berlin Heidelberg New York, pp 1–88

  • Parales RE, Lee K, Resnick SM, Jiang H, Lessner DJ, Gibson DT (2000a) Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J Bacteriol 182:1641–1649

    CAS  PubMed  Google Scholar 

  • Parales RE, Resnick SM, Yu CL, Boyd DR, Sharma ND, Gibson DT (2000b) Regioselectivity and enantioselectivity of naphthalene dioxygenase during arene cis-dihydroxylation: control by phenylalanine 352 in the α-subunit. J Bacteriol 182:5495–5504

    CAS  PubMed  Google Scholar 

  • Perkins EJ, Gordon MP, Caceres O, Lurquin PF (1990) Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172:2351–2359

    CAS  PubMed  Google Scholar 

  • Pfaffenberger B, Hardt I, Hühnerfuss H, König WA, Rimkus G, Glausch A, Schurig V, Hahn J (1994) Enantioselective degradation of alpha-hexachlorocyclohexane and cyclodiene insecticides in roe-deer liver samples from different regions of Germany. Chemosphere 29:1543–1554

    Article  CAS  PubMed  Google Scholar 

  • Powers VM, Koo CW, Kenyon GL, Gerlt JA, Kozarich JW (1991) Mechanism of the reaction catalyzed by mandelate racemase. 1. Chemical and kinetic evidence for a two-base mechanism. Biochemistry 30:9255–9263

    CAS  PubMed  Google Scholar 

  • Raschke H, Fleischmann T, Meer JR van der, Kohler H-PE (1999) Cis-chlorobenzene dihydrodiol dehydrogenase (TcbB) from Pseudomonas sp. strain P51, expressed in Escherichia coli DH5α(pTCB149), catalyzes enantioselective dehydrogenase reactions. Appl Environ Microbiol 65:5242–5246

    CAS  PubMed  Google Scholar 

  • Ridder IS, Rozeboom HJ, Kalk KH, Janssen DB, Dijkstra BW (1997) Three-dimensional structure of l-2-haloacid dehalogenase from Xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate. J Biol Chem 272:33015–33022

    Article  CAS  PubMed  Google Scholar 

  • Romero E, Dios G, Mingorance MB, Matallo MB, Peña A, Sánchez-Rasero F (1998) Photodegradation of mecoprop and dichlorprop on dry, moist and amended soil surfaces exposed to sunlight. Chemosphere 37:577–589

    Article  CAS  Google Scholar 

  • Romero E, Matallo MB, Pena A, Sánchez-Rasero F, Schmitt-Kopplin P, Dios G (2001) Dissipation of racemic mecoprop and dichlorprop and their pure R-enantiomers in three calcareous soils with and without peat addition. Environ Pollut 111:209–215

    Article  CAS  PubMed  Google Scholar 

  • Rügge K, Juhler RK, Broholm MM, Bjerg PL (2002) Degradation of the (R)- and (S)-enantiomers of the herbicides MCPP and dichlorprop in a continuous field-injection experiment. Water Res 36:4160–4164

    Article  PubMed  Google Scholar 

  • Saari RE, Hogan DA, Hausinger RP (1999) Stereospecific degradation of the phenoxypropionate herbicide dichlorprop. J Mol Catal B Enzym 6:421–428

    Article  CAS  Google Scholar 

  • Scheidleder A, Grath J, Winkler G, Stärk U, Koreimann C, Gmeiner C, Nixon S, Casillas J, Gravesen P, Leonard J, Elvira M (1999) Groundwater quality and quantity in Europe. European Environment Agency, Copenhagen

  • Schulz S, Dong W, Groth U, Cook AM (2000) Enantiomeric degradation of 2-(4-sulfophenyl)butyrate via 4-sulfocatechol in Delftia acidovorans SPB1. Appl Environ Microbiol 66:1905–1910

    Article  CAS  PubMed  Google Scholar 

  • Sharp DS (1988) Alachlor. In: Kearney PC, Kaufman DD (eds) Herbicides. Chemistry, degradation and mode of action. Dekker, New York, pp 335–382

  • Sheldon RA (1993) Chirotechnology: industrial synthesis of optically active compounds. Dekker, New York

  • Simoni S, Klinke S, Zipper C, Angst W, Kohler H-PE (1996) Enantioselective metabolism of chiral 3-phenylbutyric acid, an intermediate of linear alkylbenzene degradation, by Rhodococcus rhodochrous PB1. Appl Environ Microbiol 62:749–755

    CAS  Google Scholar 

  • Smejkal CW, Vallaeys T, Seymour FA, Burton SK, Lappin-Scott HM (2001) Characterization of (R/S)-mecoprop [2-(2-methyl-4-chlorophenoxy) propionic acid]-degrading Alcaligenes sp.CS1 and Ralstonia sp. CS2 isolated from agricultural soils. Environ Microbiol 3:288–293

    Google Scholar 

  • Smith AE, Hayden BJ (1981) Relative persistence of MCPA, MCPB and mecoprop in Saskatchewan soils, and the identification of MCPA in MCPB-treated soils. Weed Res 21:179–183

    CAS  Google Scholar 

  • Smith JM, Harrison K, Colby J (1990) Purification and characterization of d-2-haloacid dehalogenase from Pseudomonas putida strain AJ1/23. J Gen Microbiol 136:881–886

    CAS  PubMed  Google Scholar 

  • Soda K, Kurihara T, Liu J-Q, Nardi-Dei V, Park C, Miyagi M, Tsunasawa S, Esaki N (1996) Bacterial 2-haloacid dehalogenases: structures and catalytic properties. Pure Appl Chem 68:2097–2103

    CAS  Google Scholar 

  • Stoll VS, Kimber MS, Pai EF (1996) Insights into substrate binding by d-2-ketoacid dehydrogenases from the structure of Lactobacillus pentosus d-lactate dehydrogenase. Structure 4:437–447

    CAS  PubMed  Google Scholar 

  • Streber WR, Timmis KN, Zenk MH (1987) Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J Bacteriol 169:2950–2955

    CAS  PubMed  Google Scholar 

  • Sugio S, Petsko GA, Manning JM, Soda K, Ringe D (1995) Crystal structure of a d-amino acid aminotransferase: how the protein controls stereoselectivity. Biochemistry 34:9661–9669

    CAS  PubMed  Google Scholar 

  • Swisher RD (1987) Surfactant biodegradation. Dekker, New York

  • Tett VA, Willets AJ, Lappin-Scott HM (1994) Enantioselective degradation of the herbicide mecoprop [2-(2-methyl-4-chlorophenoxy)propionic acid] by mixed and pure bacterial cultures. FEMS Microbiol Ecol 14:191–200

    CAS  Google Scholar 

  • Tett VA, Willetts AJ, Lappin-Scott HM (1997) Biodegradation of the chlorophenoxy herbicide (R)-(+)-mecoprop by Alcaligenes denitrificans. Biodegradation 8:43–52

    Article  CAS  Google Scholar 

  • Trantírek L, Hynková K, Nagata Y, Murzin A, Ansorgová A, Sklenar V, Damborsky J (2001) Reaction mechanism and stereochemistry of γ-hexachlorocyclohexane dehydrochlorinase LinA. J Biol Chem 276:7734–7740

    Article  PubMed  Google Scholar 

  • Vallaeys T, Fulthorpe RR, Wright AM, Soulas G (1996) The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis. FEMS Microbiol Ecol 20:163–172

    Google Scholar 

  • Westendorf A, Benndorf D, Müller RH, Babel W (2002) The two enantiospecific dichlorprop/α-ketoglutarate-dioxygenases from Delftia acidovorans MC1—protein and sequence date of RdpA and SdpA. Microbiol Res 157:1–6

    PubMed  Google Scholar 

  • Westendorf A, Müller RH, Babel W (2003) Purification and characterisation of the enantiospecific dioxygenases from Delftia acidovorans MC1 initiating the degradation of phenoxypropionate and phenoxyacetate herbicides. Acta Biotechnol 23:3–17

    Article  CAS  Google Scholar 

  • White GF, Russell NJ (1994) Biodegradation of anionic surfactants and related molecules. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 143–177

  • Whitman CP, Hegeman GD, Cleland WW, Kenyon GL (1985) Symmetry and asymmetry in mandelate racemase catalysis. Biochemistry 24:3936–3942

    CAS  PubMed  Google Scholar 

  • Wiberg K, Letcher RJ, Sandau CD, Norstrom RJ, Tysklind M, Bidleman TF (2000) The enantioselective bioaccumulation of chiral chlordane and α-HCH contaminants in the polar bear food chain. Environ Sci Technol 34:2668–2674

    Article  CAS  Google Scholar 

  • Wiberg K, Brorström-Lundén E, Wängberg I, Bidleman TF, Haglund P (2001) Concentrations and fluxes of hexachlorocyclohexanes and chiral composition of α-HCH in environmental samples from the Southern Baltic Sea. Environ Sci Technol 35:4739–4746

    Article  CAS  PubMed  Google Scholar 

  • Williams A (1996) Opportunities for chiral agrochemicals. Pest Sci 46:3–9

    Article  CAS  Google Scholar 

  • Williams GM, Harrison I, Carlick CA, Crowley O (2003) Changes in enantiomeric fraction as evidence of natural attenuation of mecoprop in a limestone aquifer. J Contam Hydrol 64:253–267

    Article  CAS  PubMed  Google Scholar 

  • Worthing CR, Hance RJ (1991) The pesticide manual—a world compendium, 9th edn. The British Crop Council, Farnham

  • Zipper C, Nickel K, Angst W, Kohler H-PE (1996) Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov. Appl Environ Microbiol 62:4318–4322

    CAS  PubMed  Google Scholar 

  • Zipper C, Bunk M, Zehnder AJB, Kohler H-PE (1998a) Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid] by Sphingomonas herbicidovorans MH. J Bacteriol 180:3368–3374

    CAS  PubMed  Google Scholar 

  • Zipper C, Suter MJ-F, Haderlein SB, Gruhl M, Kohler H-PE (1998b) Changes in the enantiomeric ratio of (R)- to (S)-mecoprop indicate in situ biodegradation of this chiral herbicide in a polluted aquifer. Environ Sci Technol 32:2070–2076

    Article  CAS  Google Scholar 

  • Zipper C, Bolliger C, Fleischmann T, Suter MJ-F, Angst W, Müller MD, Kohler H-PE (1999) Fate of the herbicides mecoprop, dichlorprop, and 2,4-D in aerobic and anaerobic sewage sludge as determined by laboratory batch studies and enantiomer-specific analysis. Biodegradation 10:271–278

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Swiss National Science Foundation grant NF-3100-055468 (T.A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-P. E. Kohler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, T.A., Kohler, HP.E. Chirality of pollutants—effects on metabolism and fate. Appl Microbiol Biotechnol 64, 300–316 (2004). https://doi.org/10.1007/s00253-003-1511-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1511-4

Keywords

Navigation