Skip to main content

Advertisement

Log in

SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To improve the efficiency of sterilization by high hydrostatic pressure treatment (HPT), it is desirable to know the biochemical process of bacteria most sensitive to the treatment. We investigated growth properties after release from HPT of exponentially growing Escherichia coli K-12 cells. We observed growth retardation after treatment (30 min at 37°C) above 75 MPa. Long filamentous cells of about eight times normal cell length were observed at 90 min growth after treatment at 75 MPa. In the subsequent period the filamentous cells divided into normal-sized cells. recA and sulA mutant strains also formed filamentous cells, indicating that filamentation was SulA-independent. Nucleoids segregated normally in the filamentous cells. Only one FtsZ ring (or none) was detected at possible division sites in the elongated cells. Western blotting analysis demonstrated that the amount of FtsZ protein was not affected by the treatment. GTP-dependent in vitro polymerization of either FtsZ protein in E. coli crude extract or purified FtsZ protein, however, was sensitive to HPT. These facts suggest that HPT at 75 MPa denatures a fraction of FtsZ molecules, and that these denatured molecules interfere with the polymerization of functional FtsZ, resulting in the significantly reduced number of FtsZ rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3A–F
Fig. 4
Fig. 5A, B
Fig. 6A–D
Fig. 7
Fig. 8A, B

Similar content being viewed by others

References

  • Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453

    CAS  PubMed  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381

    Article  CAS  PubMed  Google Scholar 

  • Burton P, Holland IB (1983) Two pathways of division in UV-irradiated E. coli. Mol Gen Genet 190:309–314

    CAS  PubMed  Google Scholar 

  • Dai K, Lutkenhaus J (1991) ftsZ is an essential cell division gene in Escherichia coli. J Bacteriol 173:3500–3506

    CAS  PubMed  Google Scholar 

  • Elledge SJ, Walker GC (1983) Protein required for ultraviolet light and chemical mutagenesis. Identification of the products of the umuC locus of Escherichia coli. J Mol Biol 164:175–192

    CAS  PubMed  Google Scholar 

  • Gottesman S, Halpern E, Trisler P (1981) Role of sulA and sulB in filamentation by Lon mutants of Escherichia coli K-12. J Bacteriol 148:265–273

    CAS  PubMed  Google Scholar 

  • Hill TM, Sharma B, Valjavec-Gratian M, Smith J (1997) sfi-Independent filamentation in Escherichia coli is lexA dependent and requires DNA damage for induction. J Bacteriol 179:1931–1939

    CAS  PubMed  Google Scholar 

  • Hiraga S, Niki H, Ogura T, Ichinose C, Mori H, Ezaki B, Jaffe A (1989) Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J Bacteriol 171:1496–1505

    CAS  PubMed  Google Scholar 

  • Hiraga S, Ichinose C, Yamazoe M (1998) Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA-protein complexes in E. coli. Mol Cell 1:381–387

    CAS  PubMed  Google Scholar 

  • Hoover DG, Metrick C, Papineau AM, Farkas DF, Knorr D (1989) Biological effects of high hydrostatic pressure on food microorganisms. Food Technol 43:99–107

    Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1997) Effect of temperature on the role of Hsp104 and trehalose in barotolerance of Saccharomyces cerevisiae. FEBS Lett 416:1–5

    Article  CAS  PubMed  Google Scholar 

  • Kriss AE, Mitskevich IN, Cherni NE (1969) Changes in ultrastructure and chemical composition of bacterial cells under the influence of high hydrostatic pressure. Mikrobiologiya 38:88–95

    Google Scholar 

  • Landau JV (1967) Induction, transcription and translation in Escherichia coli: a hydrostatic pressure study. Biochim Biophys Acta 149:506–512

    Article  CAS  PubMed  Google Scholar 

  • Lutkenhaus J, Mukherjee A (1996) Cell division. In: Neidhart FC et al (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn, vol 2. ASM Press, Washington D.C., pp 1615–1626

  • Margolin W (2000) Themes and variations in prokaryotic cell division. FEMS Microbiol 24:531–548

    Article  CAS  Google Scholar 

  • Mukherjee A, Lutkenhaus J (1998) Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J 17:462–469

    Article  CAS  PubMed  Google Scholar 

  • Nanninga N (2001) Cytokinesis in prokaryotes and eukaryotes: common principles and different solutions. Microbiol Mol Biol Rev 65:319–333

    Article  CAS  PubMed  Google Scholar 

  • Pande C, Wishnia A (1986) Pressure dependence of equilibria and kinetics of Escherichia coli ribosomal subunit association. J Biol Chem 261:6272–6278

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sato T, Miwa T, Ishii A, Kato C, Wachi M, Nagai K, Aizawa M, Horikoshi K (2002) The dynamism of Escherichia coli under high hydrostatic pressure-repression of the FtsZ-ring formation and chromosomal DNA condensation. In: R. Hayashi (ed) Trends in high pressure bioscience and biotechnology. Elsevier, Tokyo, pp 233–238

  • Shigehisa T, Ohmori T, Saito A, Taji S, Hayashi R (1991) Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. Int J Food Microbiol 12:207–216

    Article  CAS  PubMed  Google Scholar 

  • Wachi M, Umitsuki G, Shimizu M, Takada A, Nagai K (1999) Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5′ end of 16S rRNA. Biochem Biophys Res Commun 259:483–488

    Article  CAS  PubMed  Google Scholar 

  • Walker GC (1996) The SOS response of Escherichia coli. In: Neidhardt FC et al (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn, vol 1. ASM Press, Washington D.C., pp 1400–1416

  • Welch TJ, Farewell A, Neidhardt FC, Bartlett DH (1993) Stress response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol 175:7170–7177

    CAS  PubMed  Google Scholar 

  • Yayanos AA, Pollard EC (1969) A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys J 9:1464–1482

    CAS  PubMed  Google Scholar 

  • Yu XC, Margolin W (1997) Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 16:5455–5463

  • ZoBell CE, Cobet AB (1962) Growth, reproduction, and death rates of Escherichia coli at increased hydrostatic pressures. J Bacteriol 84:1228–1236

    CAS  PubMed  Google Scholar 

  • ZoBell CE, Cobet AB (1964) Filament formation by Escherichia coli at increased hydrostatic pressures. J Bacteriol 87:710–719

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 1266086) from The Ministry of Education, Culture, Sports, Science and Technology, Japan to M.Y. and Sasakawa Scientific Research Grant (No. 14–246) from The Japan Science Society to T.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yamasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawarai, T., Wachi, M., Ogino, H. et al. SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment. Appl Microbiol Biotechnol 64, 255–262 (2004). https://doi.org/10.1007/s00253-003-1465-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1465-6

Keywords

Navigation