Skip to main content
Log in

Biotransformation of glucose to 5-keto-d-gluconic acid by recombinant Gluconobacter oxydans DSM 2343

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

For the conversion of glucose to 5-keto-d-gluconate (5-KGA), a precursor of the industrially important l-(+)-tartaric acid, Gluconobacter strains were genetically engineered. In order to increase 5-KGA formation, a plasmid-encoded copy of the gene encoding the gluconate:NADP-5 oxidoreductase (gno) was overexpressed in G. oxydans strain DSM 2434. This enzyme is involved in the nonphosphorylative ketogenic oxidation of glucose and oxidizes gluconate to 5-KGA. As the 5-KGA reductase activity depends on the cofactor NADP+, the sthA gene (encoding Escherichia coli transhydrogenase) was cloned and overexpressed in the GNO-overproducing G. oxydans strain. Growth of the sthA-carrying strains was indistinguishable from the G. oxydans wild-type strain and therefore they were chosen for the coupled overexpression of sthA and gno. G. oxydans strain DSM 2343/pRS201-gno-sthA overproducing both enzymes showed an enhanced accumulation of 5-KGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–C
Fig. 3

Similar content being viewed by others

References

  • Anderlund M, Nissen TL, Nielsen J, Villadsen J, Rydström J, Hahn-Hagerdal B, Kielland-Brandt MC (1999) Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl Environ Microbiol 65:2333–2340

    CAS  PubMed  Google Scholar 

  • Arkblad EL, Betsholtz C, Rydström J (1996) The cDNA sequence of proton-pumping nicotinamide nucleotide transhydrogenase from man and mouse. Biochim Biophys Acta 1273:203–205

    CAS  PubMed  Google Scholar 

  • Boonstra B, French CE, Wainwright I, Bruce NC (1999) The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181:1030–1034

    CAS  PubMed  Google Scholar 

  • Boonstra B, Rathbone DA, French CE, Walker EH, Bruce NC (2000) Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl Environ Microbiol 66:5161–5166

    Article  CAS  PubMed  Google Scholar 

  • Buchert J, Viikari L (1988) Oxidative d-xylose metabolism of G. oxydans. Appl Microbiol Biotechnol 29:375–379

    CAS  Google Scholar 

  • De Ley J, Frateur J (1970) The status of the generic name Gluconobacter. Int J System Bacteriol 20:83–95

    Google Scholar 

  • De Ley J, Gillis M, Swings J (1984) The genus Gluconobacter. In: Krieg NR, Holt JG (eds) Bergey′s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 267–278

  • Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 3:233–242

    Article  Google Scholar 

  • Gupta A, Singh VK, Qazi GN, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3:445–456

    Google Scholar 

  • Klasen R, Bringer-Meyer S, Sahm H (1992) Incapability of Gluconobacter oxydans to produce tartaric acid. Biotechnol Bioeng 40:183–186

    Google Scholar 

  • Klasen R, Bringer-Meyer S, Sahm H (1995) Biochemical characterization and sequence analysis of the gluconate:NADP-5 oxidoreductase gene from Gluconobacter oxydans. J Bacteriol 177:2637–2643

    CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    CAS  PubMed  Google Scholar 

  • Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206

    PubMed  Google Scholar 

  • Lichtenthaler FW (2002) Unsaturated O- and N-heterocycles from carbohydrate feedstocks. Acc Chem Res 35:728–737

    Article  CAS  PubMed  Google Scholar 

  • Macauley S, McNeil B, Harvey LM (2001) The genus Gluconobacter and its applications in biotechnology. Crit Rev Biotechnol 21:1–25

    CAS  PubMed  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microbiol Physiol 36:247–301

    CAS  Google Scholar 

  • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-Keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Matzerath I, Kläui W, Klasen R, Sahm H (1995) Vanadate catalysed oxidation of 5-keto-d-gluconic acid to tartaric acid: the unexpected effect of phosphate and carbonate on rate and selectivity. Inorg Chim Acta 237:203–205

    Article  CAS  Google Scholar 

  • Mostafa HE, Heller KJ, Geis A (2002) Cloning of Escherichia coli lacZ and lacY genes and their expression in Gluconobacter oxydans and Gluconobacter liquefaciens. Appl Environ Microbiol 68:2619–2623

    Article  CAS  PubMed  Google Scholar 

  • Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC (2001) Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18:19–32

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K (1963) Enzymatic studies on the formation of 5-ketogluconic acid by Acetobacter suboxydans. II. 5-ketogluconate reductase. J Biochem (Tokyo) 53:448

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Shinagawa E, Matsushita K, Adachi O, Ameyama M (1981) Purification and characterization of 2-keto-d-gluconate dehydrogenase from Gluconobacter melanogenus. Agric Biol Chem 45:1079–1085

    CAS  Google Scholar 

  • Shinagawa E, Matsushita K, Ameyama M, Adachi O (1984) d-gluconate dehydrogenase, 2-keto-d-gluconate yielding from Gluconobacter dioxyacetonicus: purification and characterization. Agric Biol Chem 48:1517–1522

    CAS  Google Scholar 

  • Shinjoh M, Tomiyama N, Asakura A, Hoshino T (1995) Cloning and nucleotide sequencing of the membrane-bound l-sorbosone dehydrogenase gene of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans. Appl Environ Microbiol 61:413–420

    CAS  PubMed  Google Scholar 

  • Weenk G, Olijve W, Harder W (1984) Ketogluconate formation by Gluconobacter species. Appl Microbiol Biotechnol 20:400–405

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the BMBF Verbund Mikrobielle Genomforschung (grant 031U213A) and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, U., Merfort, M., Jeude, M. et al. Biotransformation of glucose to 5-keto-d-gluconic acid by recombinant Gluconobacter oxydans DSM 2343. Appl Microbiol Biotechnol 64, 86–90 (2004). https://doi.org/10.1007/s00253-003-1455-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1455-8

Keywords

Navigation