Skip to main content
Log in

Complete lab-scale detoxification of groundwater containing 1,2-dichloroethane

  • Short Contribution
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The suspected carcinogenic solvent 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C2 groundwater pollutant on earth. However, an efficient reductive in situ detoxification technology for this compound is not known. Detoxification results of 1,2-DCA with the recently isolated anaerobic bacterium Desulfitobacterium dichloroeliminans strain DCA1 are presented. First, it was verified that strain DCA1 could compete for nutrients in the presence of fast-growing Enterococcus faecalis; the latter was observed in the enrichment culture from which strain DCA1 was isolated. Subsequently, lab-scale bioaugmentation of the strain to groundwater containing 40 mg 1,2-DCA/l indicated that the bacterium has strong metabolic activity under prevailing environmental conditions, converting the pollutant into ethene. During exponential growth, the maximum 1,2-DCA dechlorination rate exceeded 350 nmol chloride released per min per mg total bacterial protein. Growth and dechlorination within the community with autochthonous bacteria indicated a high competitive strength of strain DCA1. Interestingly this dechlorination process does not produce any toxic byproducts, such as vinyl chloride. Furthermore, complete groundwater detoxification happens within a short time-frame (days) and is robust in terms of bacterial competition, oxygen tolerance, high ionic strength, and pH range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.

References

  • Adrian L, Szewzyk U, Wecke J, Gorisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408:580–583

    Article  CAS  PubMed  Google Scholar 

  • De Wildeman S, Verstraete W (2003) The quest for microbial reductive dechlorination of C2 to C4 chloroalkanes is warranted. Appl Microbiol Biotechnol 61:94–102

    PubMed  Google Scholar 

  • De Wildeman S, Nollet H, Van Langenhove H, Diekert G, Verstraete W (2002) Reductive biodegradation of 1,2-dichloroethane by methanogenic granular sludge: perspectives for in situ remediation. Water Sci Technol 45, 43–48

    Google Scholar 

  • De Wildeman S, Neumann A, Diekert G, Verstraete W (2003a) Growth-substrate dependent dechlorination of 1,2-dichloroethane by a homoacetogenic bacterium. Biodegradation 14:241–247

    Google Scholar 

  • De Wildeman S, Diekert G, Van Langenhove H, Verstraete W (2003b) Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Appl Environ Microbiol 69:5643–5647

    Google Scholar 

  • Holliger C, Schraa G (1994) Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria. Fems Microbiol Rev 15:297–305

    Article  CAS  PubMed  Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. Fems Microbiol Rev 22:383–398

    CAS  Google Scholar 

  • Klecka GM, Carpenter CL, Gonsior SJ (1998) Biological transformations of 1,2-dichloroethane in subsurface soils and groundwater. J Contam Hydrol 34:139–154

    Article  CAS  Google Scholar 

  • Maymo-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571

    Google Scholar 

  • Maymo-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65:3108–3113

    Google Scholar 

  • Premaratne S, Mandel M, Mower HF (1995) Detection of mutagen specific adduct formation in DNA using sequencing methodology. Int J Biochem Cell Biol 27:789–794

    Google Scholar 

  • Sharma PK, McCarty PL (1996) Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl Environ Microbiol 62:761–765

    CAS  Google Scholar 

  • Sun BL, Griffin BM, Ayala-del-Rio HL, Hashsham SA, Tiedje JM (2002) Microbial dehalorespiration with 1,1,1-trichloroethane. Science 298:1023–1025

    Article  CAS  PubMed  Google Scholar 

  • Vogel TM, Criddle CS, McCarty PL (1987) Transformations of halogenated aliphatic compounds. Environ Sci Technol 21:722–736

    CAS  Google Scholar 

  • Windfuhr C (1999). Anaerobe Dechloriering von chlorierten Ethenen mit einer angereichten Mischkultur—Laborstudien und Anwendung in einem Modellgrundwasser. Herbert Utz Verlag, München (ISBN 3–89675–557–9)

Download references

Acknowledgements

We acknowledge the Ghent University for a Bijzonder Onderzoeksfonds (BOF) grant. The cooperation with NV Avecom (Beernem, Belgium) is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Verstraete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Wildeman, S., Linthout, G., Van Langenhove, H. et al. Complete lab-scale detoxification of groundwater containing 1,2-dichloroethane. Appl Microbiol Biotechnol 63, 609–612 (2004). https://doi.org/10.1007/s00253-003-1363-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1363-y

Keywords

Navigation