Skip to main content

Advertisement

Log in

Biosynthesis of fructo-oligosaccharides by Sporotrichum thermophile during submerged batch cultivation in high sucrose media

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract.

Biosynthesis of fructo-oligosaccharides (FOS) was observed during growth of the thermophilic fungus Sporotrichum thermophile on media containing high sucrose concentrations. Submerged batch cultivation with the optimum initial sucrose concentration of 250 g/l allowed the production of 12.5 g FOS/l. The FOS mixture obtained was composed of three sugars, which were isolated by size-exclusion chromatography. They were characterized by acid hydrolysis and HPLC as 1-kestose, 6-kestose and neokestose. The mechanism of osmotic adaptation of S. thermophile was investigated and sugars and amino acids were found to be the predominant compatible solutes. The fungus accumulated glutamic acid, arginine, alanine, leucine and lysine, in order to balance the outer osmotic pressure. Fatty acid analysis of the membrane lipids showed a relatively high percentage of unsaturated lipids, which is known to be associated with high membrane fluidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Andersson HB, Ellegard LH, Bosaeus IG (1999) Nondigestibility characteristics of inulin and oligofructose in humans. J Nutr 129:1428S–1430S

    CAS  PubMed  Google Scholar 

  • Andlid T, Larsson C, Liljenberg C, Marison I, Gustafsson L (1995) Enthalpy content as a function of lipid accumulation in Rhotodorula glutinis. Appl Microbiol Biotechnol 42:818–825

    Article  CAS  Google Scholar 

  • Atiyeh H, Duvnjak Z (2001) Study of the production of fructose and ethanol from sucrose media by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 57:407–411

    Article  CAS  PubMed  Google Scholar 

  • Bekers M, Vigants A, Laukevics J, Toma M, Rapoports A, Zikmanis P (2000) The effect of osmo-induced stress on product formation by Zymomonas mobilis on sucrose. Int J Food Microbiol 66:147–150

    Article  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    CAS  PubMed  Google Scholar 

  • Csonka LN (1989) Physiological and genetic response of bacteria to osmotic stress. Microbiol Rev 45:569–606

    Article  Google Scholar 

  • Förster C, Marienfeld S, Wendisch VF, Krämer R (1998) Adaptation of the filamentous fungus Ashya gossypii to hyperosmotic stress: different osmoresponse to NaCl and mannitol stress. Appl Microbiol Biotechnol 50:219–226

    Article  Google Scholar 

  • Frings E, Kunte HJ, Galinski EA (1993) Compatible solutes in representatives of the genera Brevibacterium and Corynebacterium: occurrence of tetrahydropyrimidines and glutamine. FEMS Microbiol Lett 109:25–32

    CAS  Google Scholar 

  • Galinski EA, Herzog RM (1990) The role of trehalose as a substitute for nitrogen-containing compatible solutes (Extothiorhodospira halochloris). Microbiology 153:607–613

    CAS  Google Scholar 

  • Gross D, Blanchard PH, Bell DJ (1954) Neokestose: a trisaccharide formed from sucrose by yeast invertase. J Chem Soc 1727–1730

  • Hidaka H, Eida T, Saitoh Y (1987) Industrial production of fructooligosaccharides and its application for human and animals. Nippon Nogeikagasu Kaishi 61:915–923

    CAS  Google Scholar 

  • Hidaka H, Hirayama H, Sumi N (1988) A fructooligosaccharide-producing enzyme from Aspergillus niger ATCC 20611. Agric Biol Chem 52:1181–1187

    CAS  Google Scholar 

  • Ivin PC, Clarke ML (1987) Isolation of kestoses and nystose from enzyme digests by high-performance liquid chromatography. J Chromatogr 408:393–398

    Article  CAS  Google Scholar 

  • Katapodis P, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2002) Production of β-fructofuranosidase from Sporotrichum thermophile and application in the synthesis of fructooligosaccharides. Food Biotechnol (in press)

  • Khaware RK, Koul A, Prasad R (1995) High membrane fluidity is related to NaCl stress in Candida membranefaciens. Biochem Mol Biol Int 35:875–880

    CAS  PubMed  Google Scholar 

  • Kim BW, Kwon HJ, Park HY, Nam SW, Park JP, Yun JW (2000) Production of a novel transfructosylating enzyme from Bacillus macerans EG-6. Bioprocess Eng 23:11–16

    CAS  Google Scholar 

  • Kunz C, Rudloff S (1993) Biological functions of oligosaccharides in human milk. Acta Paediatr 82:903–912

    CAS  PubMed  Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of proteins from extreme halophilic bacteria. Bacteriol Rev 38:272–290

    CAS  PubMed  Google Scholar 

  • Measures JC (1975) Role of amino acids in osmoregulation of nonhalophilic bacteria. Nature 257:398–400

    CAS  PubMed  Google Scholar 

  • Patel V, Saunders G, Bucke C (1994) Production of fructooligosaccharides by Fusarium oxysporum. Biotechnol Lett 11:1139–1144

    Google Scholar 

  • Rengpipat S, Lowe SE, Zeikus JG (1988) Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoehylicus. J Bacteriol 170:3065–3071

    CAS  PubMed  Google Scholar 

  • Rivero-Urgell M, Santamaria-Orleans A (2001) Oligosaccharides: application in infant food. Early Hum Dev 65 [Suppl]:S43–S52

  • Shiomi N, Onodera S, Chatternon J, Harrison P (1991) Separation of fructooligosaccharide isomers by anion-exchange chromatography. Agric Biol Chem 55:1427–1428

    CAS  Google Scholar 

  • Skjerdal OT, Sletta H, Flenstad SG, Josefsen KD, Levine DW, Ellingsen TE (1996) Changes in intracellular composition in response to hyperosmotic stress of NaCl, sucrose or glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum. Appl Microbiol Biotechnol 44:635–642

    Article  CAS  Google Scholar 

  • Straathof AJJ, Kieboom APG, Bekkum H van (1986) Invertase-catalysed fructosyl transfer in concentrated solutions of sucrose. Carbohydr Res 146:154–159

    Article  CAS  PubMed  Google Scholar 

  • Takeda H, Sato K, Kinoshita S (1994) Production of 1-kestose by Scopulariopsis brevicaulis. J Ferment Bioeng 77:386–389

    Article  CAS  Google Scholar 

  • Truper HG, Galinski EA (1986) Concentrated brines as habitats for microorganisms. Experientia 42:1182–1187

    Google Scholar 

  • Yun JW (1996) Fructooligosaccharides—occurrence, preparation, and application. Enzyme Microb Technol 19:107–117

    Article  CAS  Google Scholar 

  • Yun JW, Jung KH, Oh JW, Lee JH (1990) Semi-batch production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. Appl Biochem Biotechnol 24/25:299–308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Christakopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katapodis, P., Kalogeris, E., Kekos, D. et al. Biosynthesis of fructo-oligosaccharides by Sporotrichum thermophile during submerged batch cultivation in high sucrose media. Appl Microbiol Biotechnol 63, 378–382 (2004). https://doi.org/10.1007/s00253-003-1348-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1348-x

Keywords

Navigation