Skip to main content
Log in

The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We compared pyruvate accumulation in six strains of Escherichia coli and their corresponding ppc mutants. Each strain contained a mutation of a gene involved in the pathway to acetate synthesis. Strains with mutations in genes encoding the pyruvate dehydrogenase complex generally exhibited the greatest pyruvate accumulation of which CGSC6162 (an aceF mutant) and CGSC6162 Δppc were studied in greater detail in controlled fermenters. Both CGSC6162 and CGSC6162 Δppc accumulated greater than 35 g/l pyruvate in a medium supplemented with acetate. We observed pyruvate mass yields from glucose of 0.72 in CGSC6162, with volumetric productivities above 1.5 g l−1 h−1. For CGSC6162 Δppc, we observed pyruvate yields of 0.78 and volumetric productivities above 1.2 g l−1 h−1. CGSC6162 consumed all initially supplied acetate, while CGSC6162 Δppc first consumed and then generated acetate during the course of a 36 h fermentation. Acetate generation and pyruvate oxidase activity was pH- and temperature-dependent, with a pH of 7.0 and the lowest temperature studied (32°C) favoring the greatest pyruvate generation. Lactate was an unexpected by-product even though measured lactate dehydrogenase (LDH) activity was very low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Abdel-Hamid A, Attwood MM, Guest JR (2001) Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 147:1483–1498

    CAS  PubMed  Google Scholar 

  • Bunch PK, Mat-Jan F, Lee N, Clark DP (1997) The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 143:187–195

    CAS  PubMed  Google Scholar 

  • Chang DE, Jung HC, Rhee JS, Pan JG (1999) Homofermentative production of d- or l-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389

    CAS  PubMed  Google Scholar 

  • Chang YY, Cronan JE Jr (1982) Mapping non-selectable genes of Escherichia coli by using transposon Tn10: location of a gene affecting pyruvate oxidase. J Bacteriol 151:1279–1289

    CAS  PubMed  Google Scholar 

  • Chang YY, Cronan JE Jr (1983) Genetic and biochemical analyses of Escherichia coli strains having a mutation in the structural gene (poxB) for pyruvate oxidase. J Bacteriol 154:756–762

    CAS  PubMed  Google Scholar 

  • Chang YY, Wang, AY, Cronan JE Jr (1994) Expression of Escherichia coli pyruvate oxidase (poxB) depends on the sigma factor encoded by the rpoS (katF) gene. Mol Microbiol 11:1019–1028

    CAS  PubMed  Google Scholar 

  • Chao Y-P, Liao JC (1993) Alteration of growth yield by overexpression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in Escherichia coli. Appl Environ Microbiol 59:4261–4265

    CAS  PubMed  Google Scholar 

  • Clark D, Cronan JE Jr (1980) Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J Bacteriol 141:177–183

    CAS  PubMed  Google Scholar 

  • Contiero J, Beatty C, Kumari S, DeSanti CL, Strohl ER, Wolfe A (2000) Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli. J Ind Microbiol Biotechnol 24:421–430

    Article  CAS  Google Scholar 

  • Diaz-Ricci JC, Regan L, Bailey JE (1991) Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of Escherichia coli. Biotechnol Bioeng 38:1318–1324

    Google Scholar 

  • Eiteman MA, Chastain MJ (1997) Optimization of the ion-exchange analysis of organic acids from fermentation. Anal Chim Acta 338:69–75

    Article  CAS  Google Scholar 

  • Gokarn RR, Eiteman MA, Altman E (2000) Metabolic analysis of Escherichia coli in the presence and absence of the carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase. Appl Environ Microbiol 66:1844–1850

    Article  CAS  PubMed  Google Scholar 

  • Guest JR, Creaghan IT (1973) Gene-protein relationships of the α-keto acid dehydrogenase complexes of Escherichia coli K12: isolation and characterization of lipoamide dehydrogenase mutants. J Gen Microbiol 75:197–210

    CAS  PubMed  Google Scholar 

  • Ivy JL, Cortez MY, Chandler RM (1994) Effects of pyruvate on the metabolism and insulin resistance of obese Zucker rats. Am J Clin Nutr 59:331–337

    CAS  PubMed  Google Scholar 

  • Kornberg HL (1966) The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99:1–11

    CAS  PubMed  Google Scholar 

  • Lederberg EM, Lederberg J (1953) Genetic studies of lysogenecity in Escherichia coli. Genetics 38:51–64

    CAS  Google Scholar 

  • LeVine SM, Ardeshir F, Ames GF (1980) Isolation and characterization of acetate kinase and phosphotransacetylase mutants of Escherichia coli and Salmonella typhimurium. J Bacteriol 143:1081–1085

    CAS  PubMed  Google Scholar 

  • Li Y, Chen J, Lun SY (2001) Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol 57:451–459

    CAS  PubMed  Google Scholar 

  • Loewen PC, Hu B, Strutinsky J, Sparling R (1998) Regulation in the rpoS regulon of Escherichia coli. Can J Microbiol 44:707–717

    Article  CAS  PubMed  Google Scholar 

  • Miyata R, Yonehara T (1996) Improvement of fermentative production of pyruvate from glucose by Torulopsis glabrata IFO 0005. J Ferment Bioeng 82:475–479

    CAS  Google Scholar 

  • Miyata R, Yonehara T (1999) Breeding of high-pyruvate-producing Torulopsis glabrata with acquired reduced pyruvate decarboxylase. J Biosci Bioeng 88:173–177

    Article  CAS  Google Scholar 

  • Moriguchi M (1982) Fermentation production of pyruvic acid from citrus peel extract by Debaryomyces coudertii. Agric Biol Chem 46:955–961

    CAS  Google Scholar 

  • Nakazawa H, Enei H, Okumura S, Yamada H (1972) Synthesis of l-tryptophan from pyruvate, ammonia and indole. Agric Biol Chem 36:2523–2528

    CAS  Google Scholar 

  • Recny MA, Hager LP (1982) Reconstitution of native Escherichia coli pyruvate oxidase from apoenzyme monomers and NAD. J Biol Chem 257:12878–12886

    CAS  PubMed  Google Scholar 

  • Stanko RT, Tietze DL, Arch JE (1992a) Body composition, energy utilization, and nitrogen metabolism with a 4.25-MJ/d low-energy diet supplemented with pyruvate. Am J Clin Nutr 56:630–635

    CAS  PubMed  Google Scholar 

  • Stanko RT, Tietze DL, Arch JE (1992b) Body composition, energy utilization, and nitrogen metabolism with a severely restricted diet supplemented with dihydroxyacetone and pyruvate. Am J Clin Nutr 55:771–776

    CAS  PubMed  Google Scholar 

  • Takao S, Tanida M (1982) Pyruvic acid production by Schizophyllum commune. J Ferment Technol 60:277–280

    CAS  Google Scholar 

  • Tarmy EM, Kaplan NO (1968b) Chemical characterization of d-lactate dehydrogenase from Escherichia coli B. J Biol Chem 243:2579–2586

    CAS  PubMed  Google Scholar 

  • Tarmy EM, Kaplan NO (1968a) Kinetics of Escherichia coli B d-lactate dehydrogenase and evidence for pyruvate-controlled change in conformation. J Biol Chem 243:2587–2596

    CAS  PubMed  Google Scholar 

  • Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol. 68:1715–1727

    Google Scholar 

  • Yamada H, Kumagai H, Kashima N, Torri H, Enei H, Okumura S (1972) Synthesis of l-tyrosine from pyruvate, ammonia and phenol by crystalline tyrosine phenol lyase. Biochem Biophys Res Commun 46:370–374

    CAS  PubMed  Google Scholar 

  • Yanase H, Mori N, Masuda M, Kita K, Shimao M, Kato N (1992) Pyruvate production by Enterococcus casseliflavus A-12 from gluconate in an alkaline medium. J Ferment Bioeng 73:287–291

    CAS  Google Scholar 

  • Yokota A, Takao S (1984) Conversion of pyruvic acid fermentation to tryptophan production by the combination of pyruvic acid producing microorganisms and Enterobacter aerogenes having high tryptophanase activity. Agric Biol Chem 48:2663–2668

    CAS  Google Scholar 

  • Yokota A, Takao S (1989) Pyruvic acid production by lipoic acid auxotrophs of Enterobacter aerogenes. Agri Biol Chem 48:705–711

    Google Scholar 

  • Yokota A, Shimizu H, Terasawa Y, Takaoka N, Tomita F (1994a) Pyruvic acid production by a lipoic acid auxotroph of Escherichia coli W1485. Appl Microbiol Biotechnol 41:638–643

    Article  CAS  Google Scholar 

  • Yokota A, Terasawa Y, Takaoka N, Shimizu H, Tomita F (1994b) Pyruvate production by an F1-ATPase-defective mutant of Escherichia coli. Biosci Biotechnol Biochem 58:2164–2167

    CAS  PubMed  Google Scholar 

  • Yonehara T, Miyata R (1994) Fermentative production of pyruvate from glucose by Torulopsis glabrata. J Ferment Bioeng 78:155–159

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Georgia Experiment Station for financial support of this research and the technical assistance of S.A. Lee and P. Reeves. We are also very thankful to the E. coli Genetic Stock Center for providing us with the numerous strains used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eiteman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomar, A., Eiteman, M.A. & Altman, E. The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli . Appl Microbiol Biotechnol 62, 76–82 (2003). https://doi.org/10.1007/s00253-003-1234-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1234-6

Keywords

Navigation