Skip to main content
Log in

One SNP in the 3′-UTR of HMGB1 gene affects the binding of target bta-miR-223 and is involved in mastitis in dairy cattle

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

High-mobility group box protein 1 (HMGB1) gene has a universal sentinel function for nucleic acid-mediated innate immune responses and acts as a pathogenic mediator in the inflammatory disease. In an effort to identify the functional single-nucleotide polymorphism (SNP) in the 3′-untranslated region (UTR) of the bovine HMGB1 gene that affects the binding to its target microRNA, first, the expression of HMGB1 mRNA in different genotypes and its candidate bta-miR-223 was investigated. Quantitative real-time polymerase chain reaction results showed that the relative expression of HMGB1 mRNA in cows with the genotype GG is significantly higher than those in cows with the genotype AA (P < 0.05). The expression of bta-miR-223 was significantly upregulated by 1.95-fold (P < 0.05) in the bovine mastitis-infected mammary gland tissues compared with that in the healthy tissues. Subsequently, luciferase assay indicated that the HMGB1 expression was directly targeted by bta-miR-223 in human embryo kidney 293 T (HEK 293T) cells. One novel SNP (g. +2776 A > G) in the HMGB1 3′-UTR, altering the binding of HMGB1 and bta-miR-223, was found to be associated with somatic count scores in cows. Taken together, the g. +2776 A > G-GG was an advantageous genotype which can be used as a candidate functional marker for mastitis resistance breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bannerman DD (2009) Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J Anim Sci 87:10–25

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: Target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  PubMed  CAS  Google Scholar 

  • Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML et al (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831

    Article  PubMed  CAS  Google Scholar 

  • Fulci V, Scappucci G, Sebastiani GD, Giannitti C, Franceschini D, Meloni F, Colombo T, Citarella F, Barnaba V, Minisola G, Galeazzi M, Macino G (2010) miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol 71:206–211

    Article  PubMed  CAS  Google Scholar 

  • Georges M, Coppieters W, Charlier C (2007) Polymorphic miRNA-mediated gene regulation: contribution to phenotypic variation and disease. Curr Opin Genet Dev 17:166–176

    Article  PubMed  CAS  Google Scholar 

  • Harris HE, Andersson U, Pisetsky DS (2012) HMGB1: A multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 8:195–202

    Article  PubMed  CAS  Google Scholar 

  • Hou Q, Huang J, Ju Z, Li Q, Li L, Wang C, Sun T, Wang L, Hou M, Hang S, Zhong J (2012) Identification of splice variants, targeted microRNAs and functional single nucleotide polymorphisms of the BOLA-DQA2 gene in dairy cattle. DNA Cell Biol 31:739–744

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Wang H, Wang C, Li J, Li Q, Hou M, Zhong J (2010) Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol Biol Rep 37:477–483

    Article  PubMed  CAS  Google Scholar 

  • Huang JM, Ju ZH, Li QL, Hou QL, Wang CF, Li JB, Li RL, Wang LL, Sun T, Hang SQ, Gao YD, Hou MH, Zhong JF (2011a) Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. Int J Biol Sci 7:1016–1026

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Liu L, Wang HM, Zhang CX, Ju ZH, Wang CF, Zhong JF (2011b) Variants and gene expression of TLR2 gene and susceptibility to mastitis in cattle. Asian J Anim Veterinary Sci 6:51–61

    Article  CAS  Google Scholar 

  • Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman WP, Plasterk RHA (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    Article  PubMed  CAS  Google Scholar 

  • Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C, Jensen K, Cobb BS, Merkenschlager M, Rajewsky N, Rajewsky K (2008) Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132:860–874

    Article  PubMed  CAS  Google Scholar 

  • Kosaka N, Izumi H, Sekine K, Ochiya T (2010) microRNA as a new immune-regulatory agent in breast milk. Silence 1:7

    Article  PubMed  Google Scholar 

  • Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540

    Article  PubMed  CAS  Google Scholar 

  • Lindberg RL, Hoffmann F, Mehling M, Kuhle J, Kappos L (2010) Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing–remitting multiple sclerosis patients. Eur J Immunol 40:888–898

    Article  PubMed  CAS  Google Scholar 

  • Nash DL, Rogers GW, Cooper JB, Hargrove GL, Keown JF (2003) Heritability of intramammary infections at first parturition and relationships with sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield. J Dairy Sci 86:2684–2695

    Article  PubMed  CAS  Google Scholar 

  • Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik SE, Ferdin J, Kunej T, Xiao L, Manoukian S, Secreto G, Ravagnani F, Wang X, Radice P, Croce CM, Davuluri RV, Calin GA (2010) Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 70:2789–2798

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Article  PubMed  Google Scholar 

  • Pil PM, Lippard SJ (1992) Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256:234–237

    Article  PubMed  CAS  Google Scholar 

  • Ramkissoon SH, Mainwaring LA, Ogasawara Y et al (2006) Hematopoietic-specific microRNA expression in human cells. Leuk Res 30:643–647

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  PubMed  CAS  Google Scholar 

  • Schiraldi M, Raucci A, Muñoz LM, Livoti E, Celona B, Venereau E, Apuzzo T, De Marchis F, Pedotti M, Bachi A, Thelen M, Varani L, Mellado M, Proudfoot A, Bianchi ME, Uguccioni M (2012) HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209:551–563

    Article  PubMed  CAS  Google Scholar 

  • Tili E, Michaille JJ, Costinean S, Croce CM (2008) MicroRNAs, the immune system and rheumatic disease. Nat Clin Pract Rheumatol 4:534–541

    Article  PubMed  CAS  Google Scholar 

  • Voll RE, Urbonaviciute V, Herrmann M, Kalden JR (2008) High mobility group box 1 in the pathogenesis of inflammatory and autoimmune diseases. Isr Med Assoc J 10:26–28

    PubMed  Google Scholar 

  • Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, Savitsky D, Ronfani L, Akira S, Bianchi ME, Honda K, Tamura T, Kodama T, Taniguchi T (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462:99–103

    Article  PubMed  CAS  Google Scholar 

  • Yang EJ, Lee W, Ku SK, Song KS, Bae JS (2012) Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food Chem Toxicol 50:1288–1294

    Article  PubMed  CAS  Google Scholar 

  • Youngerman SM, Saxton AM, Oliver SP, Pighetti GM (2004) Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. J Dairy Sci 87:2442–2448

    Article  PubMed  CAS  Google Scholar 

  • Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H, Li H, Wang G, Evans AR, Safe S, Wu C, Zhou B (2012). A novel regulator of macrophage activation: miR-223 in obesity associated adipose tissue inflammation. Circluation 125:2892–2903

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (no. 31000543), Major Project of National Transgene in China (2011ZX08007-001), Support Program of the Ministry of Science and Technology, People’s Republic of China (2011BAD19B02, 2011BAD19B04), China Agriculture Research System (CARS-37), Project of Agricultural Fine Breed from the Department of Science and Technology of Shandong Province (2010LZ10-02).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinming Huang, Minghai Hou or Suqin Hang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Identification of the pMIR-HMGB1 by restriction PCR and enzyme digestion. M, DL2000 DNA marker; 1, 2, PCR products of plasmid with the different alleles at g. +2776; 3, 4, restriction enzyme digestion products of the different plasmids (DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Huang, J., Zhang, X. et al. One SNP in the 3′-UTR of HMGB1 gene affects the binding of target bta-miR-223 and is involved in mastitis in dairy cattle. Immunogenetics 64, 817–824 (2012). https://doi.org/10.1007/s00251-012-0641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0641-1

Keywords

Navigation