Skip to main content
Log in

Evolution of the βGRP/GNBP/β-1,3-glucanase family of insects

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The βGRP/GNBP/β-1,3-glucanase protein family of insects includes several proteins involved in innate immune recognition, such as the β-glucan recognition proteins of Lepidoptera and the Gram-negative bacteria-binding proteins of Drosophila. A phylogenetic analysis supported the existence of two distinct subfamilies, designated the pattern recognition receptor (PRR) and glucanase subfamilies, which originated by gene duplication prior to the origin of the Holometabola. In the C-terminal region (CTR) shared by both subfamilies, the PRR subfamily has evolved significantly more rapidly at the amino acid sequence level than has the glucanase subfamily, implying a relative lack of constraint on the amino acid sequence of this region in the PRR subfamily. PRR subfamily members also include an N-terminal region (NTR), involved in carbohydrate recognition, which is not shared by glucanase subfamily members. In comparisons between paralogous PRR subfamily members, there were no conserved amino acid residues in the NTR. However, when pairs of putatively orthologous PRR subfamily members were compared, the NTR was most often as conserved as the CTR or more so. This pattern suggests that the NTR may be important in functions specific to the different paralogs, while amino acid sequence changes in the NTR may have been important in functional differentiation among paralogs, specifically with regard to the types of carbohydrates that they recognize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aggrawal K, Silverman N (2007) Peptidoglycan recognition in Drosophila. Biochem Sci Trans 35:1496–1500

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bragatto I, Genta FA, Ribeiro AF, Terra WR, Ferreira C (2010) Characterization of a β-1,3-glucanase active in the alkaline midgut of Spodoptera frugiperda larvae and its relation to β-glucan-binding proteins. Insect Biochem Mol Biol 40:861–872

    Article  PubMed  CAS  Google Scholar 

  • Bulmer MS, Crozier R (2006) Variation in positive selection in termite GNBPs and relish. Mol Biol Evol 23:317–326

    Article  PubMed  CAS  Google Scholar 

  • Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Devel 39:74–87

    Article  Google Scholar 

  • Ferrandon D, Imler J-L, Hoffman JA (2004) Sensing infection in Drosophila: Toll and beyond. Semin Immunol 16:43–53

    Article  PubMed  CAS  Google Scholar 

  • Filipe SR, Tomasz A, Ligoxygakis P (2005) Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep 6:327–333

    Article  PubMed  CAS  Google Scholar 

  • Filipe SR, Gay NJ, Ligoxygakis P (2006) Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. EMBO J 25:5005–5014

    Article  PubMed  Google Scholar 

  • Genta FA, Bragatto I, Terra WR, Ferreira C (2009) Purification, characterization and sequencing of the major β-1,3-glucanase from the midgut of Tenebrio molitor larvae. Insect Biochem Mol Biol 39:861–874

    Article  PubMed  CAS  Google Scholar 

  • Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D (2003) Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302:2126–2130

    Article  PubMed  CAS  Google Scholar 

  • Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–1437

    Article  PubMed  CAS  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Hamilton C, Lay F, Bulmer MS (2011) Subteranean termite prophylactic secretions and external antifungal defenses. J Insect Physiol 57:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JA, Katafos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318

    Article  Google Scholar 

  • Hughes AL (2007) Looking for Darwin in all the wrong places: the misguided quest for positive selection at the molecular level. Heredity 99:364–373

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2005) Variation in the pattern of synonymous and nonsynonymous difference between two fungal genomes. Mol Biol Evol 22:1320–1324

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2008) Codon-based tests of positive selection, branch lengths, and the evolution of mammalian immune system genes. Immunogenetics 60:495–506

    Article  PubMed  CAS  Google Scholar 

  • Kanost MR, Jiang H, Yu X-Q (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198:97–105

    Article  PubMed  CAS  Google Scholar 

  • Lee WJ, Lee JD, Kravchenko VV, Ulevitch RJ, Brey PT (1996) Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci USA 93:7888–7893

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  PubMed  CAS  Google Scholar 

  • Matskevich AA, Quintin J, Ferrandon D (2010) The Drosophila PRR GNBP3 assembles effector complexes involved in antifungal defenses independently of its Toll-pathway activation function. Eur J Immunol 40:1244–1254

    Article  PubMed  CAS  Google Scholar 

  • Mishima Y, Quintin J, Aimanianda V, Kellenberger C, Coste F, Clavaud C, Hetru C, Hoffmann JA, Latgé J-P, Ferrandon D, Roussel A (2009) The N-terminal domain of Drosophila Gram-negative binding protein 3 (GNBP3) defines a novel family of fungal pattern recognition receptors. J Biol Chem 284:28687–28697

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Ochiai M, Ashida M (1988) Purification of a beta-1,3-glucan recognition protein in the prophenoloxidase activating system from hemolymph of the silkworm, Bombyx mori. J Biol Chem 263:12056–12062

    PubMed  CAS  Google Scholar 

  • Ochiai M, Ashida M (2000) A pattern-recognition protein for beta-1,3-glucan. The binding domain and the cDNA cloning of beta-1,3-glucan recognition protein from the silkworm, Bombyx mori. J Biol Chem 275:4995–5002

    Article  PubMed  CAS  Google Scholar 

  • Ochiai M, Niki T, Ashida M (1992) Immunocytochemical localization of beta-1,3-glucan recognition protein in the silkworm, Bombyx mori. Cell Tissue Res 268:431–437

    Article  PubMed  CAS  Google Scholar 

  • Park J-W, Kim C-H, Kim J-H, Je B-R, Roh K-B, Kim S-J, Le H-H, Ryu J-H, Lim J-H, Oh B-H, Lee W-J, Ha W-J, Lee B-L (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc Natl Acad Sci USA 104:6602–6607

    Article  PubMed  CAS  Google Scholar 

  • Pauchet Y, Freitak D, Heidel-Fischer HM, Heckel DG, Vogel H (2009) Immunity or digestion: glucanase activity in a glucan-binding protein family from Lepidoptera. J Biol Chem 284:2214–2224

    Article  PubMed  CAS  Google Scholar 

  • Pili-Floury S, Leulier F, Takahashi K, Saigo K, Samain E, Ueda R, Lemaitre B (2004) In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem 279:12848–12853

    Article  PubMed  CAS  Google Scholar 

  • Regier JC, Shultz JW, Ganley AR, Hussey A, Shi D, Ball B, Zwick A, Stajich JE, Cummings MP, Martin JW, Cunningham CW (2008) Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. Syst Biol 57:920–938

    Article  PubMed  CAS  Google Scholar 

  • Royet J (2004) Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol Immunol 41:1063–1075

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan CP, Brown PH, Roychowdhury A, Wang Q, Guan R, Silverman N, Goldman WE, Boons G-J, Mariuzza RA (2006) Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proc Natl Acad Sci USA 103:684–689

    Article  PubMed  CAS  Google Scholar 

  • Takahasi K, Ochiai M, Horiuchi M, Kumeta H, Ogura K, Ashida M, Inagaki F (2009) Solution structure of the silkworm βGRP/GNBP3 N-terminal domain reveals the mechanism for β-1,3-glucan-specific recognition. Proc Natl Acad Sci USA 106:11679–11684

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Diggins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Viljakainen L, Evans JD, Hasselmann M, Rueppell O, Tngek S, Pamilo P (2009) Rapid evolution of immune proteins in social insects. Mol Biol Evol 26:1791–1801

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Ligoxygakis O (2006) Pathogen recognition and signalling in the Drosophila innate immune response. Immunobiol 211:251–261

    Article  CAS  Google Scholar 

  • Wang L, Weber AN, Atilano ML, Filipe SR, Gay NJ, Ligoxygakis P (2006) Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. EMBO J 25:5005–5014

    Article  PubMed  CAS  Google Scholar 

  • Wiegmann BM, Trautwein MD, Kim J-W, Cassel BK, Bertone MA, Winterton SL, Yeates DK (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7:34

    Article  PubMed  Google Scholar 

  • Zhang R, Cho HY, Kim HS, Ma YG, Osaki T, Kawabata S, Söderhäll K, Lee BL (2003) Characterization and properties of a 1,3-β-D_glucan pattern recognition protein of Tenebrio molitor larvae that is specifically degraded by serine protease during prophenoloxidase activation. J Biol Chem 278:42072–42079

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin L. Hughes.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Alignment of 90 sequences the βGRPs/GNBP/β-1,3-glucanase family (PDF 97 kb)

Supplementary Figure S2

ME tree based on the JTT + G distance (a = 1.35) at 171 aligned sites. Values on branches are confidence levels of interior branch test (PDF 16 kb)

Supplementary Figure S3

ME tree of hemolymph subfamily members from Diptera and Lepidoptera, based on the JTT + G distance (a = 1.51) at 326 aligned sites. Values on branches are confidence levels of interior branch test (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, A.L. Evolution of the βGRP/GNBP/β-1,3-glucanase family of insects. Immunogenetics 64, 549–558 (2012). https://doi.org/10.1007/s00251-012-0610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0610-8

Keywords

Navigation