Skip to main content

Advertisement

Log in

Positive selection of Toll-like receptor 2 polymorphisms in two closely related old world monkey species, rhesus and Japanese macaques

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Toll-like receptor 2 (TLR2) plays an important role in the recognition of a variety of pathogenic microbes. In the present study, we compared polymorphisms of TLR2 locus in two closely related old world monkey species, rhesus monkey (Macaca mulatta) and Japanese monkey (Macaca fuscata). By nucleotide sequencing of the third exon of TLR2 gene from 21 to 35 respective individuals, we could assign 17 haplotype combinations of 17 coding SNPs of ten non-synonymous and seven synonymous substitutions. A non-synonymous substitution at codon position 326 appeared to be differentially fixed in each species, asparagine for M. mulatta whereas tyrosine for M. fuscata, and may contribute to certain functional properties because it locates in the region contributing to ligand binding and interaction with dimerization partner of TLR2-TLR1 heterodimeric complex. Although TLR2 alleles have diverged to similar extent in both species, they have evolved in significantly different ways; TLR2 of M. fuscata has undergone purifying selection while the membrane-proximal part of the extracellular domain of M. mulatta TLR2 exhibits higher rates of non-synonymous substitutions, indicating a trace of Darwinian positive selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  PubMed  CAS  Google Scholar 

  • Baena A, Mootnick AR, Falvo JV, Tsytskova AV, Ligeiro F, Diop OM, Brieva C, Gagneux P, O’Brien SJ, Ryder OA, Goldfeld AE (2007) Primate TNF promoters reveal markers of phylogeny and evolution of innate immunity. PLoS One 2:e621

    Article  PubMed  Google Scholar 

  • Bergman IM, Rosengren JK, Edman K, Edfors I (2010) European wild boars and domestic pigs display different polymorphic patterns in the Toll-like receptor (TLR) 1, TLR2, and TLR6 genes. Immunogenetics 62:49–58

    Article  PubMed  CAS  Google Scholar 

  • Blancher A, Bonhomme M, Crouau-Roy B, Terao K, Kitano T, Saitou N (2008) Mitochondrial DNA sequence phylogeny of 4 populations of the widely distributed cynomolgus macaque (Macaca fascicularis fascicularis). J Hered 99:254–264

    Article  PubMed  CAS  Google Scholar 

  • Blokhuis JH, van der Wiel MK, Doxiadis GG, Bontrop RE (2009) Evidence for balancing selection acting on KIR2DL4 genotypes in rhesus macaques of Indian origin. Immunogenetics 61:503–512

    Article  PubMed  CAS  Google Scholar 

  • Bochud PY, Hawn TR, Aderem A (2003) A Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J Immunol 170:3451–3454

    PubMed  CAS  Google Scholar 

  • Ferguson B, Street SL, Wright H, Pearson C, Jia Y, Thompson SL, Allibone P, Dubay CJ, Spindel E, Norgren RB Jr (2007) Single nucleotide polymorphisms (SNPs) distinguish Indian-origin and Chinese-origin rhesus macaques (Macaca mulatta). BMC Genomics 8:43

    Article  PubMed  Google Scholar 

  • Flynn S, Satkoski J, Lerche N, Kanthaswamy S, Smith DG (2009) Genetic variation at the TNF-alpha promoter and malaria susceptibility in rhesus (Macaca mulatta) and long-tailed (Macaca fascicularis) macaques. Infect Genet Evol 9:769–777

    Article  PubMed  CAS  Google Scholar 

  • Hayasaka K, Fujii K, Horai S (1996) Molecular phylogeny of macaques: implications of nucleotide sequences from an 896-base pair region of mitochondrial DNA. Mol Biol Evol 13:1044–1053

    PubMed  CAS  Google Scholar 

  • Hernandez RD, Hubisz MJ, Wheeler DA, Smith DG, Ferguson B, Rogers J, Nazareth L, Indap A, Bourquin T, McPherson J, Muzny D, Gibbs R, Nielsen R, Bustamante CD (2007) Demographic histories and patterns of linkage disequilibrium in Chinese and Indian rhesus macaques. Science 316:240–243

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Qiu L, Wang R, Lai X, Du G, Seghal P, Shen Y, Shao L, Halliday L, Fortman J, Shen L, Letvin NL, Chen ZW (2007) Immune gene networks of mycobacterial vaccine-elicited cellular responses and immunity. J Infect Dis 195:55–69

    Article  PubMed  CAS  Google Scholar 

  • Isa T, Yamane I, Hamai M, Inagaki H (2009) Japanese macaques as laboratory animals. Exp Anim 58:451–457

    Article  PubMed  CAS  Google Scholar 

  • Jann OC, Werling D, Chang JS, Haig D, Glass EJ (2008) Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol Biol 8:288

    Article  PubMed  Google Scholar 

  • Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31:873–884

    Article  PubMed  CAS  Google Scholar 

  • Karl JA, Wiseman RW, Campbell KJ, Blasky AJ, Hughes AL, Ferguson B, Read DS, O’Connor DH (2008) Identification of MHC class I sequences in Chinese-origin rhesus macaques. Immunogenetics 60:37–46

    Article  PubMed  CAS  Google Scholar 

  • Kawai S, Aikawa M, Kano S, Suzuki M (1993) A primate model for severe human malaria with cerebral involvement: Plasmodium coatneyi-infected Macaca fuscata. Am J Trop Med Hyg 48:630–636

    PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kormann MS, Ferstl R, Depner M, Klopp N, Spiller S, Illig T, Vogelberg C, von Mutius E, Kirschning CJ, Kabesch M (2009) Rare TLR2 mutations reduce TLR2 receptor function and can increase atopy risk. Allergy 64:636–642

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Ling B, Veazey RS, Luckay A, Penedo C, Xu K, Lifson JD, Marx PA (2002) SIVmac pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans. AIDS 16:1489–1496

    Article  PubMed  Google Scholar 

  • Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68:6398–6401

    Article  PubMed  CAS  Google Scholar 

  • Matano T, Kobayashi M, Igarashi H, Takeda A, Nakamura H, Kano M, Sugimoto C, Mori K, Iida A, Hirata T, Hasegawa M, Yuasa T, Miyazawa M, Takahashi Y, Yasunami M, Kimura A, O’Connor DH, Watkins DI, Nagai Y (2004) Cytotoxic T lymphocyte-based control of simian immunodeficiency virus replication in a preclinical AIDS vaccine trial. J Exp Med 199:1709–1718

    Article  PubMed  CAS  Google Scholar 

  • McMurray DN (2000) A nonhuman primate model for preclinical testing of new tuberculosis vaccines. Clin Infect Dis 30:S210–S212

    Article  PubMed  Google Scholar 

  • Merx S, Neumaier M, Wagner H, Kirschning CJ, Ahmad-Nejad P (2007) Characterization and investigation of single nucleotide polymorphisms and a novel TLR2 mutation in the human TLR2 gene. Hum Mol Genet 16:1225–1232

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A (2008) Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics 60:727–735

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, Coskun M, Cilli A, Yegin O (2004) The Arg753Gln polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 23:219–223

    Article  PubMed  CAS  Google Scholar 

  • Osada N, Hashimoto K, Kameoka Y, Hirata M, Tanuma R, Uno Y, Inoue I, Hida M, Suzuki Y, Sugano S, Terao K, Kusuda J, Takahashi I (2008) Large-scale analysis of Macaca fascicularis transcripts and inference of genetic divergence between M. fascicularis and M. mulatta. BMC Genomics 9:90

    Article  PubMed  Google Scholar 

  • Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) Evolutionaly and biomedical insights from the rhesus macaque genome. Science 316:222–234

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing Phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sanghavi SK, Shankarappa R, Reinhart TA (2004) Genetic analysis of Toll/Interleukin-1 receptor (TIR) domain sequences from rhesus macaque Toll-like receptors (TLRs) 1–10 reveals high homology to human TLR/TIR sequences. Immunogenetics 56:667–674

    Article  PubMed  CAS  Google Scholar 

  • Schröder NW, Diterich I, Zinke A, Eckert J, Draing C, von Baehr V, Hassler D, Priem S, Hahn K, Michelsen KS, Hartung T, Burmester GR, Göbel UB, Hermann C, Schumann RR (2005) Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J Immunol 175:2534–2540

    PubMed  Google Scholar 

  • Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274:17406–17409

    Article  PubMed  CAS  Google Scholar 

  • Shibata H, Yasunami M, Obuchi N, Takahashi M, Kobayashi Y, Numano F, Kimura A (2006) Direct determination of SNP haplotype of NFKBIL1 promoter polymorphism by DNA conformation analysis and its application to association study of chronic inflammatory diseases. Hum Immunol 67:363–373

    Article  PubMed  CAS  Google Scholar 

  • Shinkai H, Tanaka M, Morozumi T, Eguchi-Ogawa T, Okumura N, Muneta Y, Awata T, Uenishi H (2006) Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics 58:324–330

    Article  PubMed  CAS  Google Scholar 

  • Singh KK, Schmidtke J (2005) Single nucleotide polymorphisms within the promoter region of the rhesus monkey tumor necrosis factor-alpha gene. Immunogenetics 57:289–292

    Article  PubMed  CAS  Google Scholar 

  • Smith DG, McDonough JW, George DA (2007) Mitochondrial DNA variation within and among regional populations of longtail macaques (Macaca fascicularis) in relation to other species of the fascicularis group of macaques. Am J Primatol 69:182–198

    Article  PubMed  CAS  Google Scholar 

  • Stevison LS, Kohn MH (2009) Divergence population genetic analysis of hybridization between rhesus and cynomolgus macaques. Mol Ecol 18:2457–2475

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Takahashi-Tanaka Y, Yasunami M, Naruse T, Hinohara K, Matano T, Mori K, Miyazawa M, Honda M, Yasutomi Y, Nagai Y, Kimura A (2007) Reference strand-mediated conformation analysis (RSCA)-based typing of multiple alleles in the rhesus macaque MHC class I Mamu-A and Mamu-B loci. Electrophoresis 28:918–924

    Article  Google Scholar 

  • Texereau J, Chiche JD, Taylor W, Choukroun G, Comba B, Mira JP (2005) The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin Infect Dis 41:S408–S415

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Yim JJ, Adams AA, Kim JH, Holland SM (2006) Evolution of an intronic microsatellite polymorphism in Toll-like receptor 2 among primates. Immunogenetics 58:740–745

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 95:3708–3713

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) and the Global Centers of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan and by the Cooperation Research Program of Primate Research Institute, Kyoto University, Japan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Yasunami.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Figure 1

The effect of amino acid substitution at position 326 on the binding of peptide portion of Pam3CSK4 ligand to TLR2-TLR1 heterodimer. The optimized molecular structure for ternary complex of macaque TLR2-macaque TLR1 heterodimer and Pam3CSK4 ligand was obtained by homology modeling of a template structure of human TLR2-TLR1 heterodimer bound with Pam3CSK4 (PDB accession # 2Z7X). Two structural models of macaque TLR2-TLR1-Pam3CSK4 for Tyr326 variant (Mafu-Hap3, left panel) and Asn326 variant (Mamu-Hap1, right panel) were compared to illustrate the effect of a single amino acid substitution at position 326. Atoms and covalent bonds are shown by sticks as follows: carbon, gray; oxygen, red; nitrogen, blue; sulfur, yellow; and hydrogen of amine/amide, light gray. Noncovalent electrostatic interactions are shown by green lines. The values are binding energy for respective interactions in kcal/mol. Intra-chain interaction between pi-electron of side chain of tyrosine residue at 326 and CH proton of side chain of aspartic acid at 294 was lost by the change to asparagine at 326. Consequently, some interactions (such as between Phe325 of TLR2 and Ser2 of the ligand) were augmented but others (such as between Asp294 of TLR2 and Lys4 of the ligand) were attenuated. (PPT 222 kb)

Supplementary Figure 2

Interaction maps of Pam3CSK4 ligand to TLR2-TLR1 heterodimer. Interactions between ligand and amino acid residues of TLR heterodimer (A-chain, TLR2 and B-chain, TLR1) were illustrated by 2D depiction layout, where the protein residues are arranged around it in order to indicate spatial proximity and hydrogen bonds. Because of the cutoff value of strength of depiction, the weaker interaction of pi-electron of Phe325 with one of the aliphatic arms of Pam3CSK4 (R1 in Supplementary Figure 1) is not shown in the right panel, TLR2(Asn326)-TLR1-Pam3CSK4. (PPT 2,681 kb)

Supplementary Figure 3

Structural change induced by second substitution of amino acid position 405 in Asn326 variant. The structure of TLR2(Asn326)-TLR1-Pam3CSK4 (Mamu-Hap1, left panels) and that of TLR2(Asn326-Ile405)-TLR1-Pam3CSK4 (right panels) are shown. Amino acid positions are for TLR2 except for 383Gln of TLR1 (as indicated). Amino acid 405, the position of second substitution, is not directly involved in either ligand binding or dimerization interface, but the change results in the clustering of hydrophobic side chains of the TLR2 molecule as illustrated in the right upper panel. (PPT 665 kb)

Supplementary Figure 4

Structural change induced by second substitution of amino acid position 416 in Asn326 variant. The structure of TLR2(Asn326)-TLR1-Pam3CSK4 (Mamu-Hap1, left panel) and that of TLR2(Asn326-Ala416)-TLR1-Pam3CSK4 (right panel) are shown. Amino acid positions are for TLR2 except for 383Gln of TLR1 (as indicated). Amino acid 416, the position of second substitution, is not directly involved in either ligand binding or dimerization interface, but the change results in the lost of intra-chain hydrogen bond between the side chain oxygen of threonine at 416 and backbone nitrogen of threonine at 391. (PPT 433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takaki, A., Yamazaki, A., Maekawa, T. et al. Positive selection of Toll-like receptor 2 polymorphisms in two closely related old world monkey species, rhesus and Japanese macaques. Immunogenetics 64, 15–29 (2012). https://doi.org/10.1007/s00251-011-0556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-011-0556-2

Keywords

Navigation