Skip to main content

Advertisement

Log in

Inhibition of type 1 diabetes by upregulation of the circadian rhythm-related aryl hydrocarbon receptor nuclear translocator-like 2

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The genetic locus Idd6 is involved in type 1 diabetes development in the non-obese diabetic (NOD) mouse through its effect on the immune system and in particular, on T cell activities. Analysis of congenic strains for Idd6 has established the Aryl hydrocarbon receptor nuclear translocator-like 2 (Arntl2) as a likely candidate gene. In this study we investigate the role of Arntl2 in the autoimmune disease and T cell activation. An Arntl2 expressing plasmid was transfected into CD4+ T cells by nucleofection. Expression levels of cytokines and CD4+ T cell activation markers, cell death, apoptosis, and cell proliferation rates were characterized in ex vivo experiments whilst in vivo the transfected cells were transferred into NOD.SCID mice to monitor diabetes development. The results demonstrate that Arntl2 overexpression leads to inhibition of CD4+ T cell proliferation and decreases in their diabetogenic activity without influence on the expression levels of cytokines, CD4+ T cell activation markers, cell death, and apoptosis. Our findings suggest that Arntl2 at the Idd6 locus may act via the inhibition of CD4+ T cell proliferation and the reduction in the diabetogenic activity of CD4+ T cells to protect against autoimmune type 1 diabetes in the NOD mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CFSE:

Carboxyfluorescein diacetate succinimidyl ester

Arntl2:

Aryl hydrocarbon receptor nuclear translocator-like 2

References

  • Ando H, Takamura T, Matsuzawa-Nagata N, Shima KR, Eto T, Misu H, Shiramoto M, Tsuru T, Irie S, Fujimura A, Kaneko S (2009) Clock gene expression in peripheral leucocytes of patients with type 2 diabetes. Diabetologia 52:329–335

    Article  CAS  PubMed  Google Scholar 

  • Bergman ML, Penha-Goncalves C, Lejon K, Holmberg D (2001) Low rate of proliferation in immature thymocytes of the non-obese diabetic mouse maps to the Idd6 diabetes susceptibility region. Diabetologia 44:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Clements JL, Yang B, Ross-Barta SE, Eliason SL, Hrstka RF, Williamson RA, Koretzky GA (1998) Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281:416–419

    Article  CAS  PubMed  Google Scholar 

  • Dere E, Boverhof DR, Burgoon LD, Zacharewski TR (2006) In vivo-in vitro toxicogenomic comparison of TCDD-elicited gene expression in Hepa1c1c7 mouse hepatoma cells and C57BL/6 hepatic tissue. BMC Genomics 7:80

    Article  PubMed  Google Scholar 

  • Gunton JE, Kulkarni RN, Yim S, Okada T, Hawthorne WJ, Tseng YH, Roberson RS, Ricordi C, O'Connell PJ, Gonzalez FJ, Kahn CR (2005) Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349

    Article  CAS  PubMed  Google Scholar 

  • Hauben E, Gregori S, Draghici E, Migliavacca B, Olivieri S, Woisetschlager M, Roncarolo MG (2008) Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells. Blood 112:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Shimba S, Tezuka M (2007) Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull 30:621–626

    Article  CAS  PubMed  Google Scholar 

  • Hung MS, Avner P, Rogner UC (2006) Identification of the transcription factor ARNTL2 as a candidate gene for the type 1 diabetes locus Idd6. Hum Mol Genet 15:2732–2742

    Article  CAS  PubMed  Google Scholar 

  • Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol 5:226

    Article  PubMed  Google Scholar 

  • Keppler OT, Tibroni N, Venzke S, Rauch S, Fackler OT (2006) Modulation of specific surface receptors and activation sensitization in primary resting CD4+ T lymphocytes by the Nef protein of HIV-1. J Leukoc Biol 79:616–627

    Article  CAS  PubMed  Google Scholar 

  • Lai W, Chang CH, Farber DL (2003) Gene transfection and expression in resting and activated murine CD4 T cell subsets. J Immunol Methods 282:93–102

    Article  CAS  PubMed  Google Scholar 

  • Li L, Iwamoto Y, Berezovskaya A, Boussiotis VA (2006) A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance. Nat Immunol 7:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Lyons AB, Doherty KV (2004) Flow cytometric analysis of cell division by dye dilution. Curr Protoc Cytom Chapter 9: Unit 9.11

  • Lyons AB, Hasbold J, Hodgkin PD (2001) Flow cytometric analysis of cell division history using dilution of carboxyfluorescein diacetate succinimidyl ester, a stably integrated fluorescent probe. Methods Cell Biol 63:375–398

    Article  CAS  PubMed  Google Scholar 

  • Mantei A, Rutz S, Janke M, Kirchhoff D, Jung U, Patzel V, Vogel U, Rudel T, Andreou I, Weber M, Scheffold A (2008) siRNA stabilization prolongs gene knockdown in primary T lymphocytes. Eur J Immunol 38:2616–2625

    Article  CAS  PubMed  Google Scholar 

  • Marshall NB, Vorachek WR, Steppan LB, Mourich DV, Kerkvliet NI (2008) Functional characterization and gene expression analysis of CD4+ CD25+ regulatory T cells generated in mice treated with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. J Immunol 181:2382–2391

    CAS  PubMed  Google Scholar 

  • Molina TJ, Kishihara K, Siderovski DP, van Ewijk W, Narendran A, Timms E, Wakeham A, Paige CJ, Hartmann KU, Veillette A (1992) Profound block in thymocyte development in mice lacking p56lck. Nature 357:161–164

    Article  CAS  PubMed  Google Scholar 

  • Nakayamada S, Saito K, Nakano K, Tanaka Y (2007) Activation signal transduction by beta1 integrin in T cells from patients with systemic lupus erythematosus. Arthritis Rheum 56:1559–1568

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71

    Article  CAS  PubMed  Google Scholar 

  • Rogner UC, Avner P (2003) Congenic mice: cutting tools for complex immune disorders. Nat Rev Immunol 3:243–252

    Article  CAS  PubMed  Google Scholar 

  • Rogner UC, Boitard C, Morin J, Melanitou E, Avner P (2001) Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains. Genomics 74:163–171

    Article  CAS  PubMed  Google Scholar 

  • Rogner UC, Lepault F, Gagnerault MC, Vallois D, Morin J, Avner P, Boitard C (2006) The diabetes type 1 locus Idd6 modulates activity of CD4 + CD25+ regulatory T-cells. Diabetes 55:186–192

    Article  CAS  PubMed  Google Scholar 

  • Rowley J, Monie A, Hung CF, Wu TC (2009) Expression of IL-15RA or an IL-15/IL-15RA fusion on CD8+ T cells modifies adoptively transferred T-cell function in cis. Eur J Immunol 39:491–506

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Hida A, McGuinness OP, Wasserman DH, Yamazaki S, Johnson CH (2010) Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol 20:316–321

    Article  CAS  PubMed  Google Scholar 

  • Tahvanainen J, Pykalainen M, Kallonen T, Lahteenmaki H, Rasool O, Lahesmaa R (2006) Enrichment of nucleofected primary human CD4+ T cells: a novel and efficient method for studying gene function and role in human primary T helper cell differentiation. J Immunol Methods 310:30–39

    Article  CAS  PubMed  Google Scholar 

  • Tervo HM, Allespach I, Keppler OT (2008) High-level transfection of primary rabbit T lymphocytes. J Immunol Methods 336:85–89

    Article  CAS  PubMed  Google Scholar 

  • Tisch R, McDevitt H (1996) Insulin-dependent diabetes mellitus. Cell 85:291–297

    Article  CAS  PubMed  Google Scholar 

  • Vallois D, Grimm CH, Avner P, Boitard C, Rogner UC (2007) The type 1 diabetes locus Idd6 controls TLR1 expression. J Immunol 179:3896–3903

    CAS  PubMed  Google Scholar 

  • Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109

    Article  CAS  PubMed  Google Scholar 

  • Woon PY, Kaisaki PJ, Braganca J, Bihoreau MT, Levy JC, Farrall M, Gauguier D (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci USA 104:14412–14417

    Article  CAS  PubMed  Google Scholar 

  • Yeh CT, Lu SC, Tseng IC, Lai HY, Tsao ML, Huang SF, Liaw YF (2003) Antisense overexpression of BMAL2 enhances cell proliferation. Oncogene 22:5306–5314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Joëlle Morin and Xiaoming Zhang for their excellent technical assistance. This work was supported by grants from the ANR (ANR-06-PHYSIO-016-01), the ARD, and the EFSD/JDRF/Novo Nordisk Programme and by recurrent funding from the CNRS, INSERM, and Institut Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute C. Rogner.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

Arntl2 is without influence on the mRNA levels of cytokines IL-2, IL-4, IL-10, and IFN-γ in CD4+ T cells. a Q-RT-PCR assays showing that the expression levels of cytokines were comparable in splenic CD4+ T cells from NOD control mice and the congenic strain 6.VIII. Samples in each group were from six to eight females of 6–8 weeks of age. P > 0.05 for IL-2, IL-4, and IL-10; P = 0.03 for IFN-γ. b Arntl2 overexpression (24 h after transfection) in CD4+ T cells ex vivo failed to change the mRNA levels of the cytokines under non-stimulation conditions (n = 3; P > 0.05). (PDF 28 kb)

Fig. S2

Expression levels of cellular markers were similar in CD4+ T cells transfected with control plasmid and Arntl2 expressing plasmid (24 h after transfection). FACS histograms show the counts (Y-axis) and fluorescence intensities (X-axis) for anti-CD25, anti-CD62L, anti-CD44, anti-CD69, anti-GITR, anti-ICOS, and anti-TLR1 labeled cells. Culture control is the cell control that was not treated with the transfection process but only cultured in parallel. Transfection control is the cell control that was treated with the transfection process without adding plasmid. Gated events were between 15,000 and 25,000. (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, CX., Prevot, N., Boitard, C. et al. Inhibition of type 1 diabetes by upregulation of the circadian rhythm-related aryl hydrocarbon receptor nuclear translocator-like 2. Immunogenetics 62, 585–592 (2010). https://doi.org/10.1007/s00251-010-0467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-010-0467-7

Keywords

Navigation