Skip to main content
Log in

Mass spectral data for 64 eluted peptides and structural modeling define peptide binding preferences for class I alleles in two chicken MHC-B haplotypes associated with opposite responses to Marek's disease

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

An Erratum to this article was published on 07 May 2010

Abstract

In the chicken, resistance to lymphomas that form following infection with oncogenic strains of Marek's herpesvirus is strongly linked to the major histocompatibility complex (MHC)-B complex. MHC-B21 haplotype is associated with lower tumor-related mortality compared to other haplotypes including MHC-B13. The single, dominantly expressed class I gene (BF2) is postulated as responsible for the MHC-B haplotype association. We used mass spectrometry to identify peptides and structural modeling to define the peptide binding preferences of BF2*2101 and BF2*1301 proteins. Endogenous peptides (8–12 residues long) were eluted from affinity-purified BF2*2101 and BF2*1301 proteins obtained from transduced cDNA expressed in RP9 cells, hence expressed in the presence of heterologous TAP. Sequences of individual peptides were identified by mass spectrometry. BF2*2101 peptides appear to be tethered at the binding groove margins with longer peptides arching out but selected by preferred residues at positions P3, P5, and P8: X-X-[AVILFP]-X(1–5)-[AVLFWP]-X(2–3)-[VILFM]. BF2*1301 peptides appear selected for residues at P2, P3, P5, and P8: X-[DE]-[AVILFW]-X(1–2)-[DE]-X-X-[ED]-X(0–4). Some longer BF2*1301 peptides likely also arch out, but others are apparently accommodated by repositioning of Arg83 so that peptides extend beyond the last preferred residue at P8. Comparisons of these peptides with earlier peptides derived in the presence of homologous TAP transport revealed the same side chain preferences. Scanning of Marek's and other viral proteins with the BF2*2101 motif identified many matches, as did the control human leukocyte antigen A*0201 motif. The BF2*1301 motif is more restricting suggesting that this allele may confer a selective advantage only in infections with a subset of viral pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bacon LD, Witter RL (1992) Influence of turkey herpesvirus vaccination on the B-haplotype effect on Marek's disease resistance in 15.B-congenic chickens. Avian Dis 36:378–385

    Article  PubMed  CAS  Google Scholar 

  • Bacon LD, Witter RL (1993) Influence of B-haplotype on the relative efficacy of Marek's disease vaccines of different serotypes. Avian Dis 37:53–59

    Article  PubMed  CAS  Google Scholar 

  • Bacon LD, Witter RL (1994a) B haplotype influence on the relative efficacy of Marek's disease vaccines in commercial chickens. Poult Sci 73:481–487

    PubMed  CAS  Google Scholar 

  • Bacon LD, Witter RL (1994b) Serotype specificity of B-haplotype influence on the relative efficacy of Marek's disease vaccines. Avian Dis 38:65–71

    Article  PubMed  CAS  Google Scholar 

  • Bacon LD, Witter RL (1995) Efficacy of Marek's disease vaccines in Mhc heterozygous chickens: Mhc congenic × inbred line F1 matings. J Hered 86:269–273

    PubMed  CAS  Google Scholar 

  • Bacon LD, Hunt HD, Cheng HH (2001) Genetic resistance to Marek's disease. Curr Top Microbiol Immunol 255:121–141

    PubMed  CAS  Google Scholar 

  • Briles WE, Briles RW, Taffs RE, Stone HA (1983) Resistance to a malignant lymphoma in chickens is mapped to subregion of major histocompatibility (B) complex. Science 219:977–979

    Article  PubMed  CAS  Google Scholar 

  • Briles WE, Stone HA, Cole RK (1977) Marek's disease: effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science 195:193–195

    Article  PubMed  CAS  Google Scholar 

  • Collins EJ, Garboczi DN, Wiley DC (1994) Three-dimensional structure of a peptide extending from one end of a class I MHC binding site. Nature 371:626–629

    Article  PubMed  CAS  Google Scholar 

  • Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL Jr (1994) Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264:716–719

    Article  PubMed  CAS  Google Scholar 

  • Cumberbatch JA, Brewer D, Vidavsky I, Sharif S (2006) Chicken major histocompatibility complex class II molecules of the B haplotype present self and foreign peptides. Anim Genet 37:393–396

    Article  PubMed  CAS  Google Scholar 

  • Deverson EV, Leong L, Seelig A, Coadwell WJ, Tredgett EM, Butcher GW, Howard JC (1998) Functional analysis by site-directed mutagenesis of the complex polymorphism in rat transporter associated with antigen processing. J Immunol 160:2767–2779

    PubMed  CAS  Google Scholar 

  • Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296

    Article  PubMed  CAS  Google Scholar 

  • Fremont DH, Matsumura M, Stura EA, Peterson PA, Wilson IA (1992) Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257:919–927

    Article  PubMed  CAS  Google Scholar 

  • Fulton JE, Thacker EL, Bacon LD, Hunt HD (1995) Functional analysis of avian class I (BFIV) glycoproteins by epitope tagging and mutagenesis in vitro. Eur J Immunol 25:2069–2076

    Article  PubMed  CAS  Google Scholar 

  • Guillemot F, Billault A, Pourquie O, Behar G, Chausse AM, Zoorob R, Kreibich G, Auffray C (1988) A molecular map of the chicken major histocompatibility complex: the class II beta genes are closely linked to the class I genes and the nucleolar organizer. EMBO J 7:2775–2785

    PubMed  CAS  Google Scholar 

  • Guo HC, Jardetzky TS, Garrett TP, Lane WS, Strominger JL, Wiley DC (1992) Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature 360:364–366

    Article  PubMed  CAS  Google Scholar 

  • Haeri M, Read LR, Wilkie BN, Sharif S (2005) Identification of peptides associated with chicken major histocompatibility complex class II molecules of B21 and B19 haplotypes. Immunogenetics 56:854–859

    Article  PubMed  CAS  Google Scholar 

  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  PubMed  CAS  Google Scholar 

  • Hunt HD, Fulton JE (1998) Analysis of polymorphisms in the major expressed class I locus (B-FIV) of the chicken. Immunogenetics 47:456–467

    Article  PubMed  CAS  Google Scholar 

  • Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevillir N, Cox AL, Appella E, Engelhard VH (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255:1261–1263

    Article  PubMed  CAS  Google Scholar 

  • Hunt HD, Pharr GT, Bacon LD (1994) Molecular analysis reveals MHC class I intra-locus recombination in the chicken. Immunogenetics 40:370–375

    Article  PubMed  CAS  Google Scholar 

  • Joly AL, Le Rolle AL, Gonzalez AL, Mehling WJ, Stevens WJ, Coadwell WJ, Hunig JC, Howard JC, Butcher GW (1998) Co-evolution of rat TAP transporters and MHC class I RT1-A molecules. Curr Biol 8:169–172

    Article  PubMed  CAS  Google Scholar 

  • Juul-Madsen HR, Dalgaard TS, Afanassieff M (2000) Molecular characterization of major and minor MHC class I and II genes in B21-like haplotypes in chickens. Anim Genet 31:252–261

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J (1999) Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics 50:228–236

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Salomonsen J (1993) What in the dickens is with these chickens? An only slightly silly response to the first draft of Langman and Cohn. Res Immunol 144:495–502

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Salomonsen J, Flajnik M (1994) Evolutionary conservation of MHC class I and class II molecules—different yet the same. Semin Immunol 6:411–424

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Volk H, Wallny HJ (1995) A “minimal essential Mhc” and an “unrecognized Mhc”: two extremes in selection for polymorphism. Immunol Rev 143:63–88

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Jacob J, Shaw I, Walker B, Milne S, Beck S, Salomonsen J (1999a) Gene organisation determines evolution of function in the chicken MHC. Immunol Rev 167:101–117

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Milne S, Gobel TW, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999b) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Camp S, Collen T, Avila D, Salomonsen J, Wallny HJ, van Hateren A, Hunt L, Jacob JP, Johnston F, Marston DA, Shaw I, Dunbar PR, Cerundolo V, Jones EY, Kaufman J (2007) Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 27:885–899

    Article  PubMed  CAS  Google Scholar 

  • Lee LF, Bacon LD, Yoshida S, Yanagida N, Zhang HM, Witter RL (2004) The efficacy of recombinant fowl pox vaccine protection against Marek's disease: its dependence on chicken line and B haplotype. Avian Dis 48:129–137

    Article  PubMed  Google Scholar 

  • Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V (2008) Evaluation of MHC class I peptide binding prediction servers: application for vaccine research. BMC Immunol 9:8

    Article  PubMed  CAS  Google Scholar 

  • Madden DR (1995) The three-dimensional structure of peptide–MHC complexes. Annu Rev Immunol 13:587–622

    Article  PubMed  CAS  Google Scholar 

  • Maenaka K, Jones EY (1999) MHC superfamily structure and the immune system. Curr Opin Struct Biol 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Matsumura M, Fremont DH, Peterson PA, Wilson IA (1992) Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257:927–934

    Article  PubMed  CAS  Google Scholar 

  • Okazaki W, Witter RL, Romero C, Nazerian K, Sharma JM, Fadly A, Ewert D (1980) Induction of lymphoid leukosis transplantable tumours and the establishment of lymphoblastoid cell lines. Avian Pathology 9:311–329

    Article  PubMed  CAS  Google Scholar 

  • Pamer E, Cresswell P (1998) Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 16:323–358

    Article  PubMed  CAS  Google Scholar 

  • Petropoulos CJ Hughes SH (1991) Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J Virol 65:3728–3737

    Google Scholar 

  • Plachy J, Jurajda V, Benda V (1984) Resistance to Marek's disease is controlled by a gene within the B–F region of the chicken major histocompatibility complex in Rous sarcoma regressor or progressor inbred lines of chickens. Folia Biol (Praha) 30:251–258

    CAS  Google Scholar 

  • Powis SJ, Young LL, Joly E, Barker PJ, Richardson L, Brandt RP, Melief CJ, Howard JC Butcher GW (1996) The rat cim effect: TAP allele-dependent changes in a class I MHC anchor motif and evidence against C-terminal trimming of peptides in the ER. Immunity 4:159–165

    Article  PubMed  CAS  Google Scholar 

  • Rotzschke O, Falk K, Stevanovic S, Jung G, Rammensee HG (1992) Peptide motifs of closely related HLA class I molecules encompass substantial differences. Eur J Immunol 22:2453–2456

    Article  PubMed  CAS  Google Scholar 

  • Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Briles WE, Goto RM, Hosomichi K, Yanagiya K, Shimizu S, Inoko H, Miller MM (2007) Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease. J Immunol 178:7162–7172

    PubMed  CAS  Google Scholar 

  • Speir JA, Stevens J, Joly E, Butcher GW, Wilson IA (2001) Two different, highly exposed, bulged structures for an unusually long peptide bound to rat MHC class I RT1-Aa. Immunity 14:81–92

    Article  PubMed  CAS  Google Scholar 

  • Sudo T, Kamikawaji N, Kimura A, Date Y, Savoie CJ, Nakashima H, Furuichi E, Kuhara S, Sasazuki T (1995) Differences in MHC class I self peptide repertoires among HLA-A2 subtypes. J Immunol 155:4749–4756

    PubMed  CAS  Google Scholar 

  • Thacker EL, Fulton JE, Hunt HD (1995) In vitro analysis of a primary, major histocompatibility complex (MHC)-restricted, cytotoxic T-lymphocyte response to avian leukosis virus (ALV), using target cells expressing MHC class I cDNA inserted into a recombinant ALV vector. J Virol 69:6439–6444

    PubMed  CAS  Google Scholar 

  • Tong JC, Tan TW, Ranganathan S (2004) Modeling the structure of bound peptide ligands to major histocompatibility complex. Protein Sci 13:2523–2532

    Article  PubMed  CAS  Google Scholar 

  • Tynan FE, Borg NA, Miles JJ, Beddoe T, El-Hassen D, Silins SL, van Zuylen WJ, Purcell AW, Kjer-Nielsen L, McCluskey J, Burrows SR, Rossjohn J (2005) High resolution structures of highly bulged viral epitopes bound to major histocompatibility complex class I. Implications for T-cell receptor engagement and T-cell immunodominance. J Biol Chem 280:23900–23909

    Article  PubMed  CAS  Google Scholar 

  • Walker BA, van Hateren A, Milne S, Beck S, Kaufman J (2005) Chicken TAP genes differ from their human orthologues in locus organisation, size, sequence features and polymorphism. Immunogenetics 57:232–247

    Article  PubMed  CAS  Google Scholar 

  • Wallny HJ, Avila D, Hunt LG, Powell TJ, Riegert P, Salomonsen J, Skjodt K, Vainio O, Vilbois F, Wiles MV, Kaufman J (2006) Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. Proc Natl Acad Sci U S A 103:1434–1439

    Article  PubMed  CAS  Google Scholar 

  • Wong GK, Liu B, Wang J, Zhang Y, Yang X, Zhang Z, Meng Q, Zhou J, Li D, Zhang J, Ni P, Li S, Ran L, Li H, Zhang J, Li R, Li S, Zheng H, Lin W, Li G, Wang X, Zhao W, Li J, Ye C, Dai M, Ruan J, Zhou Y, Li Y, He X, Zhang Y, Wang J, Huang X, Tong W, Chen J, Ye J, Chen C, Wei N, Li G, Dong L, Lan F, Sun Y, Zhang Z, Yang Z, Yu Y, Huang Y, He D, Xi Y, Wei D, Qi Q, Li W, Shi J, Wang M, Xie F, Wang J, Zhang X, Wang P, Zhao Y, Li N, Yang N, Dong W, Hu S, Zeng C, Zheng W, Hao B, Hillier LW, Yang SP Warren WC, Wilson RK, Brandstrom M, Ellegren H, Crooijmans RP, van der Poel JJ, Bovenhuis H, Groenen MA, Ovcharenko I, Gordon L, Stubbs L, Lucas S, Glavina T, Aerts A, Kaiser P, Rothwell L, Young JR, Rogers S, Walker BA, van Hateren A, Kaufman J, Bumstead N, Lamont SJ, Zhou H, Hocking PM, Morrice D, de Koning DJ, Law A, Bartley N, Burt DW, Hunt H, Cheng HH, Gunnarsson U, Wahlberg P et al (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Susan Kovats for guidance in peptide isolation. This project was supported in part by a City of Hope Cancer Center Seed Grant and by National Research Initiative Grants nos. 2004-35205-14203 and 2006-3505-16678 from the USDA Cooperative State Research, Education, and Extension Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia M. Miller.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00251-010-0446-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherman, M.A., Goto, R.M., Moore, R.E. et al. Mass spectral data for 64 eluted peptides and structural modeling define peptide binding preferences for class I alleles in two chicken MHC-B haplotypes associated with opposite responses to Marek's disease. Immunogenetics 60, 527–541 (2008). https://doi.org/10.1007/s00251-008-0302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-008-0302-6

Keywords

Navigation