Skip to main content
Log in

Evolution of the lung surfactant proteins in birds and mammals

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Phylogenetic analyses of the families of mammalian lung surfactant proteins (SP-A, SP-B, SP-C, and SP-D) supported the hypothesis that these proteins have diverged between birds and mammals as a result of lineage-specific gene duplications and deletions. Homologs of mammalian genes encoding SP-B, SP-C, and SP-D appear to have been deleted in chickens, whereas there was evidence of avian-specific duplications of the genes encoding SP-A and presaposin. Analysis of the genes closely linked to human SP-B, SP-C, and SP-D genes revealed that all three of these genes are closely linked to genes having orthologs on chicken chromosome 6 and also to genes lacking chicken orthologs. These relationships suggest that all of the lung surfactant protein genes, as well as certain related genes, may have been linked in the ancestor of humans and chickens. Further, they imply that the loss of surfactant protein genes in the avian lineages formed part of major genomic rearrangement events that involved the loss of other genes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bernhard W, Gebert A, Vieten A, Rau GA, Hohlfeld JM, Postle AD, Freihorst J (2001) Pulmonary surfactant in birds: coping with surface tension in a tubular lung. Am J Physiol Regul Integr Comp Physiol 281:R327–R337

    PubMed  CAS  Google Scholar 

  • Bernhard W, Haslam PL, Floros J (2004) From birds to humans: new concepts on airways relative to alveolar surfactant. Am J Respir Cell Mol Biol 30:6–11

    Article  PubMed  CAS  Google Scholar 

  • Bruhn H (2005) A short guided tour through functional and structural features of saposin-like proteins. Biochem J 389:249–257

    Article  PubMed  CAS  Google Scholar 

  • Daniels CB, Orgeig S (2003) Pulmonary surfactant: the key to the evolution of air breathing. News Physiol Sci 18:151–157

    PubMed  CAS  Google Scholar 

  • Daniels CB, Orgeig S, Sullivan LC, Ling N, Bennett MB, Schürch S, Val AL, Brauner CJ (2004) The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders. Physiol Biochem Zool 77:732–749

    Article  PubMed  Google Scholar 

  • Feduccia A (1996) The origin and evolution of birds. New Haven, Yale University Press

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Hansen S, Holmskov U (2002) Lung surfactant protein D (SP-D) and the molecular diverted descendants: conglutinin, CL-43, and CL-46. Immunobiology 205:498–517

    Article  PubMed  CAS  Google Scholar 

  • Hickling TP, Clark H, Malhotra R, Sim RB (2004) Collectins and their role in lung immunity. J Leuk Biol 75:27–33

    Article  CAS  Google Scholar 

  • Hiraki Y, Shukunami C (2000) Chondromodulin-I as a novel catilage-specific growth-modulating factor. Pediatr Nephrol 14:602–605

    Article  PubMed  CAS  Google Scholar 

  • Hogenkamp A, van Eijk M, van Dik A, van Aston AJ, Veldhuisen EJ, Haagsman HP (2006) Characterization and expression sites of newly identified chicken collectins. Mol Immunol 43:1604–1616

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton M (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Mindell DP, Sorenson MD, Dimcheff DE, Hasegawa M, Asy JC, Yuri T (1999) Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Syst Biol 48:138–152

    Article  PubMed  CAS  Google Scholar 

  • Possmayer F, Naga K, Rodriguez K, Quanbar R, Schurch S (2001) Surface activity in vitro: role of surfactant proteins. Comp Biochem Physiol A 129:209–220

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sano H, Kuroki Y (2005) The lung collectins, SP-A and SP-D, modulate pulmonary innate immunity. Mol Immunol 42:279–287

    Article  PubMed  CAS  Google Scholar 

  • Scheid P, Piiper J (1971) Mechanisms of gas exchange in bird lungs. Rev Physiol Biochem Pharmacol 86:138–186

    Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Shukunami C, Oshima Y, Hiraki Y (2001) Molecular cloning of tenomodulin, a novel Chondromodulin-I related gene. Biochem Biophys Res Commun 280:1323–1327

    Article  PubMed  CAS  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    CAS  Google Scholar 

  • Sullivan LC, Daniels CB, Phillips AD, Orgeig S, Whitsett JA (1998) Conservation of surfactant protein A: evidence for a single origin for vertebrate pulmonary surfactant. J Mol Evol 46:131–138

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson T (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Turner MW (2003) The role of mannose-binding lectin in health and disease. Mol Immunol 40:423–429

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Helmberg W, Kapustin Y, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott DR, Ostell J, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, Sherrt ST, Sirotkin K, Souvorov A, Starchenko G, Suzek TO, Tatusov R, Tatusova TA, Wagner L, Yaschenko F (2006) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 34:D173–D180

    Article  PubMed  CAS  Google Scholar 

  • Wright JR (2003) Immunoregulatory functions of surfactant proteins. Nature Rev Immunol 5:58–68

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by grant GM43940 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin L. Hughes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Amino acid sequence alignments of surfactant proteins and related proteins: a surfactants A and D; b surfactant B; and c surfactant C (PDF 56 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, A.L. Evolution of the lung surfactant proteins in birds and mammals. Immunogenetics 59, 565–572 (2007). https://doi.org/10.1007/s00251-007-0218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-007-0218-6

Keywords

Navigation