Skip to main content

Advertisement

Log in

High rate of mutation reporter gene inactivation during human T cell proliferation

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Caspase activation and degradation of deoxyribonucleic acid (DNA) damage response factors occur during in vitro T-cell proliferation, and an increased frequency of hypoxanthine-guanine phosphoribosyltransferase (HPRT)-negative variants have been reported in conditions associated with in vivo T-cell proliferation. We have applied two human somatic cell mutation reporter assays, for the HPRT and phosphatidylinositol glycan class A (PIG-A) genes, to human T cells activated in vitro with anti-CD3 and anti-CD28. We demonstrate proliferation throughout 6 weeks of cultivation, and find that the frequency of variant cells phenotypically negative for HPRT and PIG-A, respectively, increases from 10−5 up to 10−3–10−2. We also report preliminary evidence for low-density CpG methylation in the HPRT promoter suggesting that epigenetic modification may contribute to this markedly heightened rate of gene inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas AK (1996) Die and let live: eliminating dangerous lymphocytes. Cell 84:655–657

    Article  PubMed  CAS  Google Scholar 

  • Abbas AK, Lichtman AH (eds) (2003) Cellular and molecular immunology, 5th edn. WB Saunders, Philadelphia

    Google Scholar 

  • Alam A, Cohen LY, Aouad S, Sekaly RP (1999) Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J Exp Med 190:1879–1890

    Article  PubMed  CAS  Google Scholar 

  • Albertini RJ (2001) HPRT mutations in humans: biomarkers for mechanistic studies. Mutation Res 489:1–16

    Article  PubMed  CAS  Google Scholar 

  • Ansari AA, Mayne A, Sundstrom JB, Gravanis MB, Kanter K, Sell KW, Villinger F, Siu CO, Herskowitz A (1995) Circulation 92:862–874

    PubMed  CAS  Google Scholar 

  • Araten DJ, Nafa K, Pakdeesuwan K, Luzzatto L (1999) Clonal populations of hematopoietic cells with paoxysmal nocturnal memoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci USA 96:5209–5214

    Article  CAS  Google Scholar 

  • Bhagwat AS (2004) DNA-cytosine deaminases: from antibody maturation to antiviral defense. DNA Repair 3:85–89

    Article  PubMed  CAS  Google Scholar 

  • Chtanova T, Newton R, Liu SM, Weininger L, Young TR, Silva DG, Bertoni F, Rinaldi A, Chappaz S, Sallusto F (2005) Identification of T cell-restricted genes, and signatures for different T cell responses, using a comprehensive collection of microarray datasets. J Immunol 175:7837–7847

    PubMed  CAS  Google Scholar 

  • Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM, Dale JK, Puck J, Davis J, Hall CG, Skoda-Smith S, Atkinson TP, Strauss SE, Lenardo MJ (2002) Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419:95–399

    Article  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    PubMed  CAS  Google Scholar 

  • de Murcia G, Shall S (eds) (2000) From DNA damage and stress signalling to cell death. Poly ADP-ribosylation reactions, 5th edn. Oxford University Press Oxford

    Google Scholar 

  • Finette BA, Homans AC, Albertini RJ (2000) Emergence of genetic instability in children treated for leukemia. Science 288:514–517

    Article  PubMed  CAS  Google Scholar 

  • Gmelig-Meyling F, Dawisha S, Steinberg AD (1992) Assessment of in vivo frequency of mutated T cells in patients with systemic lupus erythematosus. J Exp Med 175:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hildeman DA, Zhu Y, Mitchell TC, Kappler J, Marrack P (2002) Molecular mechanisms of activated T cell death in vivo. Curr Op Immunol 14:354–359

    Article  CAS  Google Scholar 

  • Hildeman DA, Mitchell TC, Kappler J, Marrack P (2003) T cell apoptosis and reactive oxygen species. J Clin Invest 111:575–581

    Article  PubMed  CAS  Google Scholar 

  • Holliday R, Ho T (2002) DNA methylation and epigenetic inheritance. Methods 27:179–183

    Article  PubMed  CAS  Google Scholar 

  • Kang SL, Kiefer CM, Yang TP (2003) Role of the promoter in maintaining transcriptionally active chromatin structure and DNA methylation patterns in vivo. Mol Cell Biol 23:4150–4161

    Article  PubMed  CAS  Google Scholar 

  • Kotova N, Grawe J (2002) Flow cytometric determination of HPRT-variants in human peripheral blood lymphocytes. Mutation Res 499:63–71

    PubMed  CAS  Google Scholar 

  • Laval F, Wink DA, Laval J (1997) A discussion of mechanisms of NO genotoxicity: implication of inhibition of DNA repair proteins. Rev Physiol Biochem Pharmacol 131:175–191

    PubMed  CAS  Google Scholar 

  • Lipkowitz S, Garry VF, Kirsch IR (1992) Interlocus V–J recombination measures genomic instability in agriculture workers at risk for lymphoid malignancies. Proc Natl Acad Sci USA 89:5301–5305

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184

    Article  PubMed  CAS  Google Scholar 

  • Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Meth 171:131–137

    Article  CAS  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  PubMed  CAS  Google Scholar 

  • McGregor WG, Maher VM, McCormick JJ (1994) Kinds and locations of mutations induced in the hypoxanthine-guanine phosphoribosyltransferase gene of human T-lymphocytes by 1-nitrosopyrene, including those caused by V(D)J recombinase. Cancer Res 54:4207–4213

    PubMed  CAS  Google Scholar 

  • Meydan D, Hellgren D, Lambert B (1998) Variations in the frequency of T-cell receptor beta/gamma-interlocus recombination in long-term cultures of non-irradiated and X- and gamma-irradiated human lymphocytes. Int J Radiat Biol 74:697–703

    Article  PubMed  CAS  Google Scholar 

  • Miossec C, Dutilleul V, Fassy F, Diu-Hercend A (1997) Evidence for CPP32 activation in the absence of apoptosis during T lymphocyte stimulation. J Biol Chem 272:13459–13462

    Article  PubMed  CAS  Google Scholar 

  • Newton K, Strasser A (2003) Caspases signal not only apoptosis but also antigen-induced activation in cells of the immune system. Genes Dev 17:819–825

    Article  PubMed  CAS  Google Scholar 

  • Nouspikel T, Hanawalt PC (2002) DNA repair in terminally differentiated cells. DNA Repair 1:59–75

    Article  PubMed  CAS  Google Scholar 

  • Romanov SR, Kozakiewicz K, Holst CR, Stampfer MR, Haupt LM, Tlsty TD (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409:633–637

    Article  PubMed  CAS  Google Scholar 

  • Sallmyr A, Henriksson G, Fukushima S, Bredberg A (2001) Ku protein in human T and B lymphocytes: full length functional form and signs of degradation. Biochim Biophys Acta 1538:305–312

    Article  PubMed  CAS  Google Scholar 

  • Sancar A, Lindsey-Bolt LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  PubMed  CAS  Google Scholar 

  • Stirzaker C, Song JZ, Davidson B, Clark SJ (2004) Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res 64:3871–3877

    Article  PubMed  CAS  Google Scholar 

  • Takeda J, Miyata T, Kawagoe K, Iida Y, Endo Y, Fujita T, Takahashi M, Kitani K, Kinoshita T (1993) Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73:703–711

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson IPM, Novelli MR, Bodmer WF (1996) The mutation rate and cancer. Proc Natl Acad Sci USA 93:14800–14803

    Article  PubMed  CAS  Google Scholar 

  • Tong WM, Cortes U, Wang ZQ (2001) Poly(ADP-ribose) polymerase: a guardian angel protecting the genome and suppressing tumorigenesis. Biochim Biophys Acta 1552:27–37

    PubMed  CAS  Google Scholar 

  • Ushijima T (2005) Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 5:223–231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Walter Bodmer for generously providing laboratory facilities for the DNA methylation experiments and for the statistic analyses; Kristian Riesbeck for advice on T-cell activation protocol and Johan Bredberg for the mathematical formula. This work was supported by the Swedish Institute, the Swedish Cancer Society, ICRETT Fellowship from UICC Geneva, UMAS Hospital Cancer Foundation, Gunnar Nilsson Cancer Fund and the Greta och Johan Kock, Crafoord, Osterlund and King Gustav V:s 80 year funds.

The experiments performed comply with the current laws of the countries, i.e. Sweden and United Kingdom, in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Bredberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabdoulkhakova, A., Henriksson, G., Avkhacheva, N. et al. High rate of mutation reporter gene inactivation during human T cell proliferation. Immunogenetics 59, 135–143 (2007). https://doi.org/10.1007/s00251-006-0180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0180-8

Keywords

Navigation