Skip to main content

Advertisement

Log in

Quantitation of Anaplasma marginale major surface protein (MSP)1a and MSP2 epitope-specific CD4+ T lymphocytes using bovine DRB3*1101 and DRB3*1201 tetramers

  • Original paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Antigen-specific CD4+ T cells play a critical role in protective immunity to many infectious pathogens. Although the antigen-specific CD4+ T cells can be measured by functional assays such as proliferation or cytokine enzyme-linked immunospot, such assays are limited to a specific function and cannot quantify anergic or suppressed T cells. In contrast, major histocompatiblity complex (MHC) class II tetramers can enumerate epitope-specific CD4+ T cells independent of function. In this paper, we report the construction of bovine leukocyte antigen MHC class II tetramers using a novel mammalian cell system to express soluble class II DRA/DRB3 molecules and defined immunodominant peptide epitopes of Anaplasma marginale major surface proteins (MSPs). Phycoerythrin-labeled tetramers were either loaded with exogenous peptide or constructed with the peptide epitope linked to the N terminus of the DRB3 chain. A DRB3*1101 tetramer loaded with MSP1a peptide F2-5B (ARSVLETLAGHVDALG) and DRB3*1201 tetramers loaded with MSP1a peptide F2-1-1b (GEGYATYLAQAFA) or MSP2 peptide P16-7 (NFAYFGGELGVRFAF) specifically stained antigen-specific CD4+ T cell lines and clones. Tetramers constructed with the T-cell epitope linked to the DRB3 chain were slightly better at labeling CD4+ T cells. In one cell line, the number of tetramer-positive T cells increased to approximately 94% of the CD4+ T cells after culture for 21 weeks with specific antigen. This novel technology should be useful to track the fate of antigen-specific CD4+ T-cell responses in cattle after immunization or infection with persistent pathogens, such as A. marginale, that modulate the host immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott JR, Palmer GH, Kegerreis KA, Hetrick PF, Howard CJ, Hope CJ, Brown WC (2005) Rapid and long-term disappearance of CD4+ T lymphocyte responses specific for Anaplasma marginale major surface protein-2 (MSP2) in MSP2 vaccinates following challenge with live A. marginale. J Immunol 174:6702–6715

    PubMed  CAS  Google Scholar 

  • Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6:353–360

    Article  PubMed  CAS  Google Scholar 

  • Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507

    Article  PubMed  CAS  Google Scholar 

  • Bercovici N, Duffour M-T, Agrawal S, Salcedo M, Abastada J-P (2000) New methods for assessing T-cell responses. Clin Diagn Lab Immunol 7:859–864

    Article  PubMed  CAS  Google Scholar 

  • Brown WC, McGuire TC, Zhu D, Lewin HA, Sosnow J, Palmer GH (2001a) Highly conserved regions of the immunodominant major surface protein 2 of the genogroup II ehrlichial pathogen Anaplasma marginale are rich in naturally derived CD4+ T lymphocyte epitopes that elicit strong recall responses. J Immunol 166:1114–1124

    PubMed  CAS  Google Scholar 

  • Brown WC, Palmer GH, Lewin HA, McGuire TC (2001b) CD4+ T lymphocytes from calves immunized with Anaplasma marginale major surface protein 1 (MSP1), a heteromeric complex of MSP1a and MSP1b, preferentially recognize the MSP1a carboxyl terminus that is conserved among strains. Infect Immun 69:6853–6862

    Article  PubMed  CAS  Google Scholar 

  • Brown WC, McGuire TC, Mwangi W, Kegerreis KA, Macmillan H, Lewin HA, Palmer GH (2002) Major histocompatibility complex class II DR-restricted memory CD4+ T lymphocytes recognize conserved immunodominant epitopes of Anaplasma marginale major surface protein 1a. Infect Immun 70:5521–5532

    Article  PubMed  CAS  Google Scholar 

  • Brown WC, Brayton KA, Styer CM, Palmer GH (2003) The hypervariable region of Anaplasma marginale major surface protein 2 (MSP2) contains multiple immunodominant CD4+ T lymphocyte epitopes that elicit variant-specific proliferative and IFN-γ responses in MSP2 vaccinates. J Immunol 170:3790–3798

    PubMed  CAS  Google Scholar 

  • Brown WC, Palmer GH, Brayton KA, Meeus PFM, Barbet AF, Kegerreis KA, McGuire TC (2004) CD4+ T lymphocytes from Anaplasma marginale major surface protein 2 (MSP2) vaccines recognize naturally processed epitopes conserved in MSP3. Infect Immun 72:3688–3692

    Article  PubMed  CAS  Google Scholar 

  • Buckner JH, Holzer U, Novak EJ, Reijonen H, Kwok WW, Nepom GT (2002) Defining antigen-specific responses with human MHC class II tetramers. J Allergy Clin Immunol 110:199–208

    Article  PubMed  CAS  Google Scholar 

  • Chang H-C, Bao Z-Z, Yao Y, Tse AGD, Goyarts EC, Madsen M, Kawasaki E, Brauer PP, Sacchettini JC, Nathenson SG, Reinherz EL (1994) A general method for facilitating heterodimeric pairing between two proteins: application to expression of α and β T-cell receptor extracellular segments. Proc Natl Acad Sci USA 91:11408–11412

    Article  PubMed  CAS  Google Scholar 

  • Chatenoud L, Salomon B, Bluestone JA (2001) Suppressor T cells—they’re back and critical for regulation of autoimmunity! Immunol Rev 182:149–163

    Article  PubMed  CAS  Google Scholar 

  • Collen T, Dimarchi R, Doel TR (1991) A T cell epitope in VP1 of foot-and-mouth disease virus is immunodominant for vaccinated cattle. J Immunol 146:749–755

    PubMed  CAS  Google Scholar 

  • Collen T, Carr V, Parsons K, Charleston B, Morrison WI (2002) Analysis of the repertoire of cattle CD4+ T cells reactive with bovine viral diarrhoea virus. Vet Immunol Immunopathol 87:235–238

    Article  PubMed  CAS  Google Scholar 

  • Court RA, Sitte K, Opdebeeck JP, East IJ (1998) Mapping the T cell epitopes of the Babesia bovis antigen 12D3: implications for vaccine design. Parasite Immunol 20:1–8

    PubMed  CAS  Google Scholar 

  • Crawford F, Kozono H, White J, Marrack P, Kappler J (1998) Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8:675–682

    Article  PubMed  CAS  Google Scholar 

  • Cunliffe SL, Wyer JR, Sutton JK, Lucas M, Harcourt G, Klenerman P, McMichael AJ, Kelleher AD (2002) Optimization of peptide linker length in production of MHC class II/peptide tetrameric complexes increases yield and stability, and allows identification of antigen-specific CD4+ T cells in peripheral blood mononuclear cells. Eur J Immunol 32:3366–3375

    PubMed  CAS  Google Scholar 

  • Ferlin W, Glaichenhaus N, Mougneau E (2000) Present difficulties and future promise of MHC multimers in autoimmune exploration. Curr Opin Immunol 12:670–675

    Article  PubMed  CAS  Google Scholar 

  • Fogg MH, Parsons KR, Thomas LH, Taylor G (2001) Identification of CD4+ T cell epitopes on the fusion (F) and attachment (G) proteins of bovine respiratory syncytial virus (BRSV). Vaccine 19:3226–3240

    Article  PubMed  CAS  Google Scholar 

  • Glass EJ, Millar P (1994) Induction of effective cross-reactive immunity by FMDV peptides is critically dependent upon specific MHC-peptide-T cell interactions. Immunology 82:1–8

    PubMed  CAS  Google Scholar 

  • Glass EJ, Millar P (1995) Bovine T cells preferentially recognize non-viral spacer epitopes in a putative FMDV vaccinal peptide. Vaccine 13:225–229

    Article  PubMed  CAS  Google Scholar 

  • Glass EJ, Oliver RA, Russell GC (2000) Duplicated DQ haplotypes increase the complexity of restriction element usage in cattle. J Immunol 65:134–138

    Google Scholar 

  • Haghparast A, Wauben MHM, G-Stulemeyer MC, van Kooten P, Hensen EJ (2000) Selection of T-cell epitopes from foot-and mouth disease virus reflects the binding affinity to different cattle MHC class II molecules. Immunogenetics 51:733–742

    Article  PubMed  CAS  Google Scholar 

  • Kozono H, White J, Clements J, Marrack P, Kappler J (1994) Production of soluble MHC class II proteins with covalently bound single peptides. Nature 360:151–154

    Article  Google Scholar 

  • Kwok WW, Gebe JA, Liu A, Agar S, Ptacek N, Hmmer J, Koelle DM, Nepom GT (2001) Rapid epitope identification from complex class-II-restricted T-cell antigens. Trends Immunol 22:583–588

    Article  PubMed  CAS  Google Scholar 

  • Lewin HA, Russell GC, Glass EJ (1999) Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunol Rev 167:145–158

    Article  PubMed  CAS  Google Scholar 

  • Lopez JE, Siems WF, Palmer GH, Brayton KA, McGuire TC, Norimine J, Brown WC (2005) Identification of novel antigenic proteins in a complex Anaplasma marginale outer membrane immunogen by mass spectrometry and genomic mapping. Infect Immun 73:8109–8118

    Article  PubMed  CAS  Google Scholar 

  • Mallone R, Nepom GT (2004) MHC class II tetramers and the pursuit of antigen-specific T cells: define, deviate, delete. Clin Immunol 110:232–242

    Article  PubMed  CAS  Google Scholar 

  • Norimine J, Brown WC (2005) Intrahaplotype and interhaplotype pairing of bovine leukocyte antigen DQA and DQB molecules generate functional DQ molecules important for priming CD4+ T-lymphocyte responses. Immunogenetics 57:750–762

    Article  PubMed  CAS  Google Scholar 

  • Norimine J, Suarez CE, McElwain TF, Florin-Christensen M, Brown WC (2002) Immunodominant epitopes in Babesia bovis rhoptry-associated protein 1 that elicit memory CD4+ T-lymphocyte responses in B. bovis-immune individuals are located in the amino-terminal domain. Infect Immun 70:2039–2048

    Article  PubMed  CAS  Google Scholar 

  • Norimine J, Mosqueda J, Suarez CE, Palmer GH, McElwain TF, Mbassa G, Brown WC (2003) Stimulation of T-helper cell gamma interferon and immunoglobulin G responses specific for Babesia bovis rhoptry-associated protein 1 (RAP-1) or a RAP-1 protein lacking the carboxy-terminal repeat region is insufficient to provide protective immunity against virulent B. bovis challenge. Infect Immun 71:5021–5032

    Article  PubMed  CAS  Google Scholar 

  • Norimine J, Mosqueda J, Palmer GH, Lewin HA, Brown WC (2004) Conservation of Babesia bovis small heat shock protein (Hsp20) among strains and definition of T helper cell epitopes recognized by cattle with diverse major histocompatibility complex class II haplotypes. Infect Immun 72:1096–1106

    Article  PubMed  CAS  Google Scholar 

  • Novak EJ, Liu AW, Nepom GT, Kwok WW (1999) MHC class II tetramers identify peptide-specific human CD4+ T cells proliferating in response to influenza A antigen. J Clin Invest 104:R63–R67

    Article  PubMed  CAS  Google Scholar 

  • Novak EJ, Liu AW, Gebe JA, Falk BA, Nepom GT, Koelle DM, Kwok WW (2001) Tetramer-guided epitope mapping: rapid identification and characterization of immunodominant CD4+ T cell epitopes from complex antigens. J Immunol 166:6665–6670

    PubMed  CAS  Google Scholar 

  • Palmer GH, McGuire TC (1984) Immune serum against Anaplasma marginale initial bodies naturalizes infectivity for cattle. J Immunol 133:1010–1015

    PubMed  CAS  Google Scholar 

  • Palmer GH, Barbet AF, Davis WC, McGuire TC (1986) Immunization with an isolate-common surface protein protects cattle against anaplasmosis. Science 231:1299–1302

    Article  PubMed  CAS  Google Scholar 

  • Palmer GH, Barbet AF, Cantor GH, McGuire TC (1989) Immunization of cattle with a 105-kDa surface protein complex induces protection against a structurally variant Anaplasma marginale isolate. Infect Immun 57:3666–3669

    PubMed  CAS  Google Scholar 

  • Palmer GH, Rurangirwa FR, Kocan KM, Brown WC (1999) Molecular basis for vaccine development against the ehrlichial pathogen Anaplasma marginale. Parasitol Today 15:281–286

    Article  PubMed  CAS  Google Scholar 

  • Palmer GH, Brown WC, Rurangirwa FR (2000) Antigenic variation in the persistence and transmission of the ehrlichia Anaplasma marginale. Microbes Infect 2:167–176

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz JD, Vrljic M, Kasson PM, Liang MN, Busch R, Boniface JJ, Davis MM, McConnell HM (1998) Formation of a highly peptide-receptive state of class II MHC. Immunity 9:699–709

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  PubMed  CAS  Google Scholar 

  • Sharif S, Mallard BA, Wilkie BN, Sargeant JM, Scott HM, Dekkers JCM, Leslie KE (1998) Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with the occurrence of disease and milk somatic cell score in Canadian dairy cattle. Anim Genet 29:185–193

    Article  PubMed  CAS  Google Scholar 

  • Staska LM, Davies CJ, Brown WC, McGuire TC, Suarez CE, Park JY, Mathison BA, Abbott JR, Baszler TV (2005) Identification of vaccine candidate peptides in the NcSRS2 surface protein of Neospora caninum by using CD4+ cytotoxic T lymphocytes and gamma interferon-secreting T lymphocytes of infected Holstein cattle. Infect Immun 73:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Suvas S, Rouse BT (2006) Treg control of antimicrobial T cell responses. Curr Opin Immunol 18:1–5

    Article  CAS  Google Scholar 

  • Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296

    Article  PubMed  CAS  Google Scholar 

  • Thornton AM, Shevach EM (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 164:183–190

    PubMed  CAS  Google Scholar 

  • Tuo W, Palmer GH, McGuire TC, Zhu D, Brown WC (2000) Interleukin-12 as an adjuvant promotes immunoglobulin G and type 1 cytokine recall responses to major surface protein 2 of the ehrlichial pathogen Anaplasma marginale. Infect Immun 68:270–280

    Article  PubMed  CAS  Google Scholar 

  • van Eijk MJT, Stewart-Haynes JA, Lewin HA (1992) Extensive polymorphism of the BoLA-DRB3 gene distinguished by PCR-RFLP. Anim Genet 23:483–496

    Article  PubMed  Google Scholar 

  • van Lierop MJ, van Maanen K, Meloen RH, Rutten VP, de Jong MA, Hensen EJ (1992) Proliferative lymphocyte responses to foot-and-mouth disease virus and three FMDV peptides after vaccination or immunization with these peptides in cattle. Immunology 75:406–413

    PubMed  Google Scholar 

  • van Lierop MJ, Nilsson PR, Wagenaar JP, van Noort JM, Campbell JD, Glass EJ, Joosten I, Hensen EJ (1995) The influence of MHC polymorphism on the selection of T-cell determinants of FMDV in cattle. Immunology 84:79–85

    PubMed  Google Scholar 

  • Zhang Y, Palmer GH, Abbott JR, Howard CJ, Hope JC, Brown WC (2003) CpG ODN 2006 and IL-12 are comparable for priming Th1 lymphocyte and IgG responses in cattle immunized with a rickettsial outer membrane protein in alum. Vaccine 21:3307–3318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Kimberly Kegerreis, Shelley Whidbee, and Emma Karel for excellent technical assistance, Waithaka Mwangi for providing 293-F cells, and Guy Palmer for helpful comments on the manuscript. This work was supported by grants R01-AI44005 and R01-AI053692 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH) and by the US Department of Agriculture Cooperative Agreement 58-5348-044. These experiments are in compliance with USDA and NIH guidelines for vertebrate animal use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzo Norimine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norimine, J., Han, S. & Brown, W.C. Quantitation of Anaplasma marginale major surface protein (MSP)1a and MSP2 epitope-specific CD4+ T lymphocytes using bovine DRB3*1101 and DRB3*1201 tetramers. Immunogenetics 58, 726–739 (2006). https://doi.org/10.1007/s00251-006-0140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0140-3

Keywords

Navigation