Skip to main content
Log in

Fas has a role in cerebral malaria, but not in proliferation or exclusion of the murine parasite in mice

  • Brief Communication
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

We examined the susceptibility of murine Fas-deficient mutants to malaria infection in order to investigate the role of Fas in an experimental murine model of cerebral malaria (CM). We infected mice of B6 and CBA wild-type and mutant backgrounds with Plasmodium berghei ANKA. The incidence of CM in the mutant mice (B6-lpr, CBA-lprcg) was decreased by about 50% compared with wild-type control strains at 2 weeks after infection. We did not observe significant differences of parasitemia during a murine malaria infection with nonlethal Plasmodium yoelii 17XNL between wild-type and lymphoproliferative (lpr) mutant mice of C3H and MRL genetic backgrounds, although B6-lpr mice exhibited significantly higher parasitemia than did B6 mice 12 to 18 days after infection. These results suggest Fas has a possible role in CM but may not play a major role in the proliferation or exclusion of a murine malaria parasite in a nonlethal infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bagot S, Campino S, Penha-Goncalves C, Pied S, Cazennave P, Holmberg D (2002) Identification of two cerebral malaria resistat loci using an inbred wild-derived mouse strain. Proc Natl Acad Sci U S A 99:9919–9923

    Google Scholar 

  • Helmby H, Jonsson G, Troye-Blomberg M (2000) Cellular changes and apoptosis in the spleens and peripheral blood of mice infected with blood-stage Plasmodium chabaudi chabaudi AS. Infect Immun 68:1485–1490

    Google Scholar 

  • Hu MS, Schwarzman JD, Yeaman GR, Collins J, Seguin R, Khan IA, Kasper LH (1999) Fas-FasL interaction involved in pathogenesis of ocular toxoplasmosis in mice. Infect Immun 67:928–935

    Google Scholar 

  • Huang FP, Xu D, Esfandiari E, Sands W, Wei X, Liew FL (1998) Mice defective in Fas are highly susceptible to Leishmania major infection despite elevated IL-12 synthesis, strong Th1 responses, and enhanced nitric oxide production. J Immunol 160:4143–4147

    Google Scholar 

  • Kern P, Dietrich M, Hemmer C, Wellinghausen N (2000) Increased levels of soluble Fas ligand in serum in Plasmodium falciparum malaria. Infect Immun 68:3061–3063

    Google Scholar 

  • Kimura M, Matsuzawa A (1994) Autoimmunity in mice bearing lprcg: a novel mutant gene. Int Rev Immunol 11:193–210

    Google Scholar 

  • Langhorne J, Quin SJ, Sanni LA (2002) Mouse models of blood-stage malaria infections: immune responses and cytokines involved in protection and pathology. Chem Immunol 80:204–228

    CAS  PubMed  Google Scholar 

  • Li C, Seixas E, Langhorne J (2001) Rodent malarias: the mouse as a model for understanding immune responses and pathology induced by the erythrocytic stages of the parasite. Med Microbiol Immunol 189:115–126

    Article  CAS  PubMed  Google Scholar 

  • Lou J, Lucas R, Grau GE (2001) Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin Microbiol Rev 14:810–820

    Article  CAS  PubMed  Google Scholar 

  • Lucas R, Juillard P, Decoster E, Redard M, Burger D, Donati Y, Giroud C, Monso-Hinard C, Kesel TD, Buurman WA, Moore MW, Dayer J, Fiers W, Bluethmann H, Grau GE (1997) Crucial role of tumor necrosis factor (TNF) receptor 2 and membrane-bound TNF in experimental cerebral malaria. Eur J Immunol 27:1719–1725

    Google Scholar 

  • Martins GA, Petkova SB, Machado FS, Kitsis RN, Weiss LM, Wittner M, Tanowitz HB, Silva JS (2001) Fas-FasL interaction modulates nitric oxide production in Trypanosoma cruzi-infected mice. Immunology 103:122–129

    Google Scholar 

  • Matsumoto J, Kawai S, Terao K, Kirinoki M, Yasutomo Y, Aikawa M, Matsuda H (2000) Malaria infection induces rapid elevation of the soluble Fas ligand level in serum and subsequent T lymphocytopenia: possible factors responsible for the differences in susceptibility of two species of Macaca monkeys to Plasmodium coatneyi infection. Infect Immun 68:1183–1188

    Google Scholar 

  • Moss JE, Aliprantis AO, Zychlinsky A (1999) The regulation of apoptosis by microbial pathogens. Int Rev Cytol 187:203–259

    Google Scholar 

  • Nadeau JH (2003) Modifier genes and protective alleles in humans and mice. Curr Opin Genet Dev 13:290–295

    Google Scholar 

  • Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    CAS  PubMed  Google Scholar 

  • Piguet PF, Kan CD, Vesin C, Rochat A, Donati Y, Barazzone C (2001) Role of CD40-CD40L in mouse severe malaria. Am J Pathol 159:733–742

    Google Scholar 

  • Piguet PF, Kan CD, Vesin C (2002) Role of tumor necrosis factor receptor 2 (TNFR2) in cerebral malaria in mice. Lab Invest 82:1155–1166

    Google Scholar 

  • Pino P, Vouldoukis I, Kolb JP, Mahmoudi N, Desportes-Livage I, Bricaire F, Danis M, Dugas B, Mazier D (2000) Plasmodium falciparum-infected erythrocyte adhesion induces caspase activation and apoptosis in human endothelial cells. J Infect Dis 187:1283–1290

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamio Ohno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, T., Kobayashi, F. & Nishimura, M. Fas has a role in cerebral malaria, but not in proliferation or exclusion of the murine parasite in mice. Immunogenetics 57, 293–296 (2005). https://doi.org/10.1007/s00251-005-0791-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0791-5

Keywords

Navigation