Skip to main content

Advertisement

Log in

LST1 and NCR3 expression in autoimmune inflammation and in response to IFN-γ, LPS and microbial infection

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Many genes in the central region of the major histocompatibility complex (MHC) encode proteins involved in immune and inflammatory responses. In this study, we have further characterized two genes in the MHC class IV region, leucocyte-specific transcript (LST) 1 and natural cytotoxicity-triggering receptor 3 (NCR3) (also known as 1C7 and natural killer (NK)p30). The specific function of LST1 is not known, although expression analysis and functional data suggest an immunomodulatory role. The LST1 gene undergoes extensive alternative splicing, giving rise to both membrane-bound (encoded by exon 3) and soluble isoforms. The NCR3 protein is involved in NK-mediated cytotoxicity and plays a role in NK/dendritic cell crosstalk. Expression of these genes was examined, by real-time reverse transcriptase–polymerase chain reaction, in autoimmune-induced inflammation, specifically rheumatoid-arthritis-affected blood and synovium, and in response to stimulation with inflammatory mediators and bacterial agents. The expression of LST1, specifically splice variants encoding soluble isoforms and NCR3, was increased in rheumatoid-arthritis-affected blood and synovium and was associated with more severe inflammation in the synovium. Furthermore, both genes were significantly up-regulated in response to lipopolysaccharide, interferon (IFN)-γ and bacterial infection. These findings suggest that NCR3 and soluble isoforms of LST1 may play a role in inflammatory and infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allcock RJ, Price P, Gaudieri S, Leelayuwat C, Witt CS, Dawkins RL (1999) Characterisation of the human central MHC gene, BAT1: genomic structure and expression. Exp Clin Immunogenet 16:98–106

    Article  PubMed  CAS  Google Scholar 

  • Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP, Hession C, O'Brine-Greco B, Foley SF, Ware CF (1993) Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72:847–856

    Article  PubMed  CAS  Google Scholar 

  • Canete JD, Martinez SE, Farres J, Sanmarti R, Blay M, Gomez A, Salvador G, Munoz-Gomez J (2000) Differential Th1/Th2 cytokine patterns in chronic arthritis: interferon gamma is highly expressed in synovium of rheumatoid arthritis compared with seronegative spondyloarthropathies. Ann Rheum Dis 59:263–268

    Article  PubMed  CAS  Google Scholar 

  • Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100:4120–4125

    Article  PubMed  CAS  Google Scholar 

  • de Baey A, Fellerhoff B, Maier S, Martinozzi S, Weidle U, Weiss EH (1997) Complex expression pattern of the TNF region gene LST1 through differential regulation, initiation, and alternative splicing. Genomics 45:591–600

    Article  PubMed  Google Scholar 

  • Eugster HP, Muller M, Karrer U, Car BD, Schnyder B, Eng VM, Woerly G, Le Hir M, di Padova F, Aguet M, Zinkernagel R, Bluethmann H, Ryffel B (1996) Multiple immune abnormalities in tumor necrosis factor and lymphotoxin-alpha double-deficient mice. Int Immunol 8:23–36

    Article  PubMed  CAS  Google Scholar 

  • Fort MM, Leach MW, Rennick DM (1998) A role for NK cells as regulators of CD4+ T cells in a transfer model of colitis. J Immunol 161:3256–3261

    PubMed  CAS  Google Scholar 

  • Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333

    Article  PubMed  CAS  Google Scholar 

  • Gruen JR, Weissman SM (2001) Human MHC class III and IV genes and disease associations. Front Biosci 6:D960–D972

    Article  PubMed  CAS  Google Scholar 

  • Holzinger I, de Baey A, Messer G, Kick G, Zwierzina H, Weiss EH (1995) Cloning and genomic characterization of LST1: a new gene in the human TNF region. Immunogenetics 42:315–322

    Article  PubMed  CAS  Google Scholar 

  • Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot CC Jr, Wright MW, Wain HM, Trowsdale J, Ziegler A, Beck S (2004) Gene map of the extended human MHC. Nat Rev Genet 5:889–899

    Article  PubMed  CAS  Google Scholar 

  • Kilding R, Iles MM, Timms JM, Worthington J, Wilson AG (2004) Additional genetic susceptibility for rheumatoid arthritis telomeric of the DRB1 locus. Arthritis Rheum 50:763–769

    Article  PubMed  CAS  Google Scholar 

  • Koizumi F, Matsuno H, Wakaki K, Ishii Y, Kurashige Y, Nakamura H (1999) Synovitis in rheumatoid arthritis: scoring of characteristic histopathological features. Path Int 49:298–304

    Article  CAS  Google Scholar 

  • Krenn V, Morawietz L, Haupl T, Neidel J, Petersen I, Konig A (2002) Grading of chronic synovitis—a histopathological grading system for molecular and diagnostic pathology. Pathol Res Pract 198:317–325

    Article  PubMed  CAS  Google Scholar 

  • Lechler R (1994) HLA and disease. Academic, London

  • Matsumoto Y, Kohyama K, Aikawa Y, Shin T, Kawazoe Y, Suzuki Y, Tanuma N (1998) Role of natural killer cells and TCR gamma delta T cells in acute autoimmune encephalomyelitis. Eur J Immunol 28:1681–1688

    Article  PubMed  CAS  Google Scholar 

  • Miossec P, van den Berg W (1997) Th1/Th2 cytokine balance in arthritis. Arthritis Rheum 40:2105–2115

    Article  PubMed  CAS  Google Scholar 

  • Mulcahy B, Waldron-Lynch F, McDermott MF, Adams C, Amos CI, Zhu DK, Ward RH, Clegg DO, Shanahan F, Molloy MG, O'Gara F (1996) Genetic variability in the tumor necrosis factor–lymphotoxin region influences susceptibility to rheumatoid arthritis. Am J Hum Genet 59:676–683

    PubMed  CAS  Google Scholar 

  • Musatov MI, Petrova ED, Konenkov VI (1997) [The interrelation of the expression of HLA class I and II proteins and of the costimulatory proteins CD11a/CD18 and CD16 with the lytic activity of resting and activated natural killer lymphocytes]. Tsitologiia 39:617–628

    PubMed  CAS  Google Scholar 

  • Neville MJ, Campbell RD (1999) A new member of the Ig superfamily and a V-ATPase G subunit are among the predicted products of novel genes close to the TNF locus in the human MHC. J Immunol 162:4745–4754

    PubMed  CAS  Google Scholar 

  • Raghunathan A, Sivakamasundari R, Wolenski J, Poddar R, Weissman SM (2001) Functional analysis of B144/LST1: a gene in the tumor necrosis factor cluster that induces formation of long filopodia in eukaryotic cells. Exp Cell Res 268:230–244

    Article  PubMed  CAS  Google Scholar 

  • Rollinger-Holzinger I, Eibl B, Pauly M, Griesser U, Hentges F, Auer B, Pall G, Schratzberger P, Niederwieser D, Weiss EH, Zwierzina H (2000) LST1: a gene with extensive alternative splicing and immunomodulatory function. J Immunol 164:3169–3176

    PubMed  CAS  Google Scholar 

  • Sivakamasundari R, Raghunathan A, Zhang CY, Chowdhury RR, Weissman SM (2000) Expression and cellular localization of the protein encoded by the 1C7 gene: a recently described component of the MHC. Immunogenetics 51:723–732

    Article  PubMed  CAS  Google Scholar 

  • Sivori S, Parolini S, Marcenaro E, Millo R, Bottino C, Moretta A (2000) Triggering receptors involved in natural killer cell-mediated cytotoxicity against choriocarcinoma cell lines. Hum Immunol 61:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Tak PP, Smeets TJ, Daha MR, Kluin PM, Meijers KA, Brand R, Meinders AE, Breedveld FC (1997) Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum 40:217–225

    Article  PubMed  CAS  Google Scholar 

  • Vitale M, Della Chiesa M, Carlomagno S, Pende D, Arico M, Moretta L, Moretta A (2005) NK-dependent DC maturation is mediated by TNFalpha and IFNgamma released upon engagement of the NKp30 triggering receptor. Blood 106(2):566–571

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Siegert S, Neure L, Grolms M, Liu L, Eggens U, Radbruch A, Braun J, Sieper J (1999) The elevated ratio of interferon gamma-/interleukin-4-positive T cells found in synovial fluid and synovial membrane of rheumatoid arthritis patients can be changed by interleukin-4 but not by interleukin-10 or transforming growth factor beta. Rheumatology (Oxford) 38:1058–1067

    Article  CAS  Google Scholar 

  • Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T (1997) Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 186:1677–1687

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Pat Higgins for excellent technical assistance, J. Maxwell Dow for helpful discussions and all the participants in this study. We are grateful to Jim O'Mahony for advice on real-time RT-PCR analysis. This work was supported by a Research Scholarship from Enterprise Ireland (project code BR/2000/129) to H.M., the Health Research Board and ICARE Ireland, and in part by grants awarded by the Higher Education Authority of Ireland (PRTLI programmes to F.O.G.), The Science Foundation of Ireland (SFI 02/IN.1/B1261, 04/BR/B0597 to F.O.G.) and the European Commission (QLK3-CT-2000-31759, QLTK3-CT-2001-0010, and QLK5-CT-2002-0091 to F.O.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. O'Gara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulcahy, H., O'Rourke, K.P., Adams, C. et al. LST1 and NCR3 expression in autoimmune inflammation and in response to IFN-γ, LPS and microbial infection. Immunogenetics 57, 893–903 (2006). https://doi.org/10.1007/s00251-005-0057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0057-2

Keywords

Navigation