Skip to main content
Log in

Evolution of caprine and ovine β-defensin genes

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Defensins comprise an important family of anti-microbial peptides. Among vertebrates, numerous defensin genes have been detected, but their evolutionary background is still discussed. We investigated the molecular evolution and variability of β-defensins of Caprini via sequence analyses of defensin introns. Screening of several domestic and wild species of Caprini revealed a total of 13 discrete β-defensin coding sequences, with three of them described before this study. Phylogenetic analyses revealed that the array of newly described defensin genes is of monophyletic origin and has arisen in numerous independent duplication events after separation of the ancestral defensins. As a result of that scenario, recent defensin genes are distributed in a species-specific manner. Values of synonymous and non-synonymous substitutions demonstrated that both modes of evolutionary pressure, positive as well as negative selection, have acted. In addition, conservation of some β-defensin exons is demonstrated. Discrimination of certain β-defensin genes was possible only due to intron-specific differences. Therefore, sequence analyses restricted to the exons would result in underestimation of the number of β-defensin genes. Our study shows that for reconstruction of the phylogenetic history data of defensin introns are more appropriated. Comparisons among the amino acid sequences show moderate substitutions without changing the net charge of the mature peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antcheva N, Boniotto M, Zelezetsky I, Pacor S, Falzacappa MV, Crovella S, Tossi A (2004) Effects of positively selected sequence variations in human and Macaca fascicularis beta-defensins 2 on antimicrobial activity. Antimicrob Agents Chemother 48:685–688

    Article  PubMed  CAS  Google Scholar 

  • Bals R, Goldman MJ, Wilson JM (1998) Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun 66:1225–1232

    PubMed  CAS  Google Scholar 

  • Bensch KW, Raida M, Magert HJ, Schulz-Knappe P, Forssmann WG (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368:331–335

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (1991) Antibacterial peptides: key components needed in immunity. Cell 65:205–207

    Article  PubMed  CAS  Google Scholar 

  • Boniotto M, Antcheva N, Zelezetsky I, Tossi A, Palumbo V, Verga Falzacappa MV, Sgubin S, Braida L, Amoroso A, Crovella S (2003a) A study of host defence peptide beta-defensin 3 in primates. Biochem J 374:707–714

    Article  PubMed  CAS  Google Scholar 

  • Boniotto M, Tossi A, DelPero M, Sgubin S, Antcheva N, Santon D, Masters J, Crovella S (2003b) Evolution of the beta defensin 2 gene in primates. Genes Immun 4:251–257

    Article  PubMed  CAS  Google Scholar 

  • Brockus CW, Jackwood MW, Harmon BG (1998) Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow. Anim Genet 29:283–289

    Article  PubMed  CAS  Google Scholar 

  • Clark AG (1994) Invasion and maintenance of a gene duplication. Proc Natl Acad Sci U S A 91:2950–2954

    Article  PubMed  CAS  Google Scholar 

  • Del Pero M, Boniotto M, Zuccon D, Cervella P, Spano A, Amoroso A, Crovella S (2002) Beta-defensin 1 gene variability among non-human primates. Immunogenetics 53:907–913

    Article  PubMed  CAS  Google Scholar 

  • Diamond G, Bevins CL (1998) beta-Defensins: endogenous antibiotics of the innate host defense response. Clin Immunol Immunopathol 88:221–225

    Article  PubMed  CAS  Google Scholar 

  • Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL (1991) Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci U S A 88:3952–3956

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Gabay JE, Scott RW, Campanelli D, Griffith J, Wilde C, Marra MN, Seeger M, Nathan CF (1989) Antibiotic proteins of human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A 86:5610–5614

    Article  PubMed  CAS  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  PubMed  CAS  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Lehrer RI (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861

    Article  PubMed  CAS  Google Scholar 

  • Harwig SS, Swiderek KM, Kokryakov VN, Tan L, Lee TD, Panyutich EA, Aleshina GM, Shamova OV, Lehrer RI (1994) Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett 342:281–285

    Article  PubMed  CAS  Google Scholar 

  • Hoover DM, Boulegue C, Yang D, Oppenheim JJ, Tucker K, Lu W, Lubkowski J (2002) The structure of human macrophage inflammatory protein-3alpha /CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human beta-defensins. J Biol Chem 40:37647–37654

    Article  CAS  Google Scholar 

  • Hudson RR, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    PubMed  CAS  Google Scholar 

  • Hughes AL (1999) Evolutionary diversification of the mammalian defensins. Cell Mol Life Sci 56:94–103

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Yeager M (1997) Coordinated amino acid changes in the evolution of mammalian defensins. J Mol Evol 44:675–682

    Article  PubMed  CAS  Google Scholar 

  • Huttner KM, Kozak CA, Bevins CL (1997) The mouse genome encodes a single homolog of the antimicrobial peptide human beta-defensin 1. FEBS Lett 413:45–49

    Article  PubMed  CAS  Google Scholar 

  • Huttner KM, Lambeth MR, Burkin HR, Burkin DJ, Broad TE (1998) Localization and genomic organization of sheep antimicrobial peptide genes. Gene 206:85–91

    Article  PubMed  CAS  Google Scholar 

  • Jia HP, Wowk SA, Schutte BC, Lee SK, Vivado A, Tack BF, Bevins CL, McCray PB Jr (2000) A novel murine beta-defensin expressed in tongue, esophagus, and trachea. J Biol Chem 275:33314–33320

    Article  PubMed  CAS  Google Scholar 

  • Jones DE, Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267:23216–23225

    PubMed  CAS  Google Scholar 

  • Jones DE, Bevins CL (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 315:187–192

    Article  PubMed  CAS  Google Scholar 

  • Jukes T, Cantor C (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Google Scholar 

  • Kagan BL, Selsted ME, Ganz T, Lehrer RI (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci U S A 87:210–214

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1969) The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61:893–903

    PubMed  CAS  Google Scholar 

  • Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) MEGA: Molecular Evolutionary Genetics Analysis, version 1.01. Pennsylvania State University, University Park, PA

    Google Scholar 

  • Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T, Szklarek D, Selsted ME (1988) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 8:1829–1835

    Google Scholar 

  • Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11:105–128

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Zhao C, Heng HH, Ganz T (1997) The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 43:316–320

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Fischer S (1998) New aspects of an old discussion—phylogenetic relationships of Ammotragus and Pseudois within the subfamily Caprinae based on comparison of the 12S rDNA sequences. J Zoolog Syst Evol Res 36:173–178

    Google Scholar 

  • Luenser K, Ludwig A (2005) Variability and evolution of bovine beta-defensin genes. Genes Immun 6:115–122

    Article  PubMed  CAS  Google Scholar 

  • Lynn DJ, Lloyd AT, Fares MA, O'Farrelly C (2004) Evidence of positively selected sites in mammalian alpha-defensins. Mol Biol Evol 21:819–827

    Article  PubMed  CAS  Google Scholar 

  • Martin E, Ganz T, Lehrer RI (1995) Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol 58:128–136

    PubMed  CAS  Google Scholar 

  • Maxwell AI, Morrison GM, Dorin JR (2003) Rapid sequence divergence in mammalian beta-defensins by adaptive evolution. Mol Immunol 40:413–421

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Morrison GM, Semple CA, Kilanowski FM, Hill RE, Dorin JR (2003) Signal sequence conservation and mature peptide divergence within subgroups of the murine beta-defensin gene family. Mol Biol Evol 20:460–470

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, pp 79–83

    Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Nguyen TX, Cole AM, Lehrer RI (2003) Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 24:1647–1654

    Article  PubMed  CAS  Google Scholar 

  • Nicholas P, Mor A (1995) Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol 49:227–304

    Google Scholar 

  • Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388:167–171

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ohno S (1973) Ancient linkage groups and frozen accidents. Nature 244:259–262

    Article  Google Scholar 

  • Ouellette AJ (2004) Defensin-mediated innate immunity in the small intestine. Best Pract Res Clin Gastroenterol 18:405–419

    Article  PubMed  CAS  Google Scholar 

  • Ouellette AJ, Miller SI, Henschen AH, Selsted ME (1992) Purification and primary structure of murine cryptdin-1, a Paneth cell defensin. FEBS Lett 304:146–148

    Article  PubMed  CAS  Google Scholar 

  • Ouellette AJ, Hsieh MM, Nosek MT, Cano-Gauci DF, Huttner KM, Buick RN, Selsted ME (1994) Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect Immun 62:5040–5047

    PubMed  CAS  Google Scholar 

  • Ouellette AJ, Satchell DP, Hsieh MM, Hagen SJ, Selsted ME (2000) Characterization of luminal Paneth cell alpha-defensins in mouse small intestine. Attenuated antimicrobial activities of peptides with truncated amino termini. J Biol Chem 275:33969–33973

    Article  PubMed  CAS  Google Scholar 

  • Patil A, Hughes AL, Zhang G (2004) Rapid evolution and diversification of mammalian alpha-defensins as revealed by comparative analysis of rodent and primate genes. Physiol Genomics 20:1–11

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Raj PA, Dentino AR (2002) Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett 206:9–18

    Article  PubMed  CAS  Google Scholar 

  • Raj PA, Antonyraj KJ, Karunakaran T (2000) Large-scale synthesis and functional elements for the antimicrobial activity of defensins. Biochem J 347:633–641

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Russell JP, Diamond G, Tarver AP, Scanlin TF, Bevins CL (1996) Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha. Infect Immun 64:1565–1568

    PubMed  CAS  Google Scholar 

  • Satchell DP, Sheynis T, Shirafuji Y, Kolusheva S, Ouellette AJ, Jelinek R (2003) Interactions of mouse Paneth cell alpha-defensins and alpha-defensin precursors with membranes. Prosegment inhibition of peptide association with biomimetic membranes. J Biol Chem 278:13838–13846

    Article  PubMed  CAS  Google Scholar 

  • Schonwetter BS, Stolzenberg ED, Zasloff MA (1995) Epithelial antibiotics induced at sites of inflammation. Science 267:1645–1648

    Article  PubMed  CAS  Google Scholar 

  • Schröder JM (1999) Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci 56:32–46

    Article  PubMed  Google Scholar 

  • Schutte BC, McCray PB Jr (2002) [beta]-Defensins in lung host defense. Annu Rev Physiol 64:709–748

    Article  PubMed  CAS  Google Scholar 

  • Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr (2002) Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci U S A 99:2129–2133

    Article  PubMed  CAS  Google Scholar 

  • Selsted ME, Brown DM, DeLange RJ, Harwig SS, Lehrer RI (1985) Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem 260:4579–4584

    PubMed  CAS  Google Scholar 

  • Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 268:6641–6648

    PubMed  CAS  Google Scholar 

  • Semple CA, Rolfe M, Dorin JR (2003) Duplication and selection in the evolution of primate beta-defensin genes. Genome Biol 4:R31. DOI 10.1186/gb-2003-4-5-r31

    Article  PubMed  Google Scholar 

  • Shackleton DM, IUCN/SSC Caprinae Specialist Group (1997) Wild sheep and goats and their relatives. Status survey and conservation action plan for Caprinae. IUCN, Gland, Switzerland

    Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tanabe H, Yuan J, Zaragoza MM, Dandekar S, Henschen-Edman A, Selsted ME, Ouellette AJ (2004) Paneth cell alpha-defensins from rhesus macaque small intestine. Infect Immun 72:1470–1478

    Article  PubMed  CAS  Google Scholar 

  • Tang YQ, Yuan J, Miller CJ, Selsted ME (1999a) Isolation, characterization, cDNA cloning, and antimicrobial properties of two distinct subfamilies of alpha-defensins from rhesus macaque leukocytes. Infect Immun 67:6139–6144

    PubMed  CAS  Google Scholar 

  • Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999b) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286:498–502

    Article  PubMed  CAS  Google Scholar 

  • Territo MC, Ganz T, Selsted ME, Lehrer RI (1989) Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest 84:2017–2020

    PubMed  CAS  Google Scholar 

  • Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI (2003) Retrocyclin, an antiretroviral theta-defensin, is a lectin. J Immunol 170:4708–4716

    PubMed  CAS  Google Scholar 

  • Wilde CG, Griffith JE, Marra MN, Snable JL, Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264:11200–11203

    PubMed  CAS  Google Scholar 

  • Xiao Y, Hughes AL, Ando J, Matsuda Y, Cheng JF, Skinner-Noble D, Zhang G (2004) A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics 5:56

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22:181–215

    Article  PubMed  CAS  Google Scholar 

  • Zeya HI, Spitznagel JK (1966) Antimicrobial specificity of leukocyte lysosomal cationic proteins. Science 154:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhao C, Nguyen T, Liu L, Shamova O, Brogden K, Lehrer RI (1999) Differential expression of caprine beta-defensins in digestive and respiratory tissues. Infect Immun 67:6221–6224

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.K. Hett and C. Pitra for helpful comments and discussions. Furthermore, the authors recognise the following veterinarians and biologists: M. Stöck, A. Pauly, G. Straub and G. Wibbelt, for providing samples and information on the health status of feral sheep.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Luenser.

Electronic supplementary material

Fig6

Luenser et al. 2005; Evolution of caprine and ovine β-defensin genes Multiple sequence alignment of complete caprine and ovine defensin genes. Vertical numbers indicate nucleotide positions. Dots indicate identical sites referring to sbd2, and dashes indicate gaps introduced by the alignment. Nucleotides of exon1 (1–57) and 2 (1564–1621) are in bold letters. Sequences solely differing in intron regions are subsequently termed as intron variants of that gene (e.g. sbd2_1/I1, sbd2_1/I2 etc.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luenser, K., Fickel, J. & Ludwig, A. Evolution of caprine and ovine β-defensin genes. Immunogenetics 57, 487–498 (2005). https://doi.org/10.1007/s00251-005-0001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0001-5

Keywords

Navigation