Skip to main content

Advertisement

Log in

Potential regulatory sequences in the untranslated regions of the baboon MHC class Ib gene, Paan-AG, more closely resemble those in the human MHC class Ia genes than those in the class Ib gene, HLA-G

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The baboon major histocompatibility complex (MHC) class Ib gene, Paan-AG, is structurally similar to the human MHC class Ia gene, HLA-A, but exhibits characteristics similar to those of the class Ib gene HLA-G. These include limited polymorphism, alternative splicing of a single message, and restricted tissue distribution, with high expression in the placenta. In order to determine whether regulatory elements controlling expression of Paan-AG resemble those of HLA-A or HLA-G, we cloned the 5′ and 3′ untranslated regions of Paan-AG. Unexpectedly, sequence comparisons showed that potential regulatory elements in Paan-AG strikingly resembled those in HLA-A and differed in major respects from those in HLA-G. Unlike HLA-G, Paan-AG contained an intact interferon-γ stimulated response element (ISRE) in the promoter. Studies using luciferase reporter assays showed that the Paan-AG ISRE was functional. The basal activity of the Paan-AG ISRE and its response to interferon-γ was similar to that of class Ia MHC genes. Further, we identified an ISRE in the 3′ untranslated region of Paan-AG that is known to be functional in HLA-A2 but is deleted in HLA-G. These experiments predict that functional studies may demonstrate differences in regulation of expression of Paan-AG and HLA-G genes, which could restrict the use of the baboon as a primate model for studying HLA-G expression and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bouteiller P Le (1994) HLA class I chromosomal region, genes and products: Facts and questions. Crit Rev Immunol 14:89–129

    PubMed  Google Scholar 

  • Bouteiller P Le, Blaschitz A (1999) The functionality of HLA-G is emerging. Immunol Rev 167:233–244

    PubMed  Google Scholar 

  • Bouteiller P Le, Solier C, Proll J, Aquerre-Girr M, Fournel S, Lenfant F (1999) Placental HLA-G protein expression in vivo: where and what for? Hum Reprod Update 5:223–233

    Article  PubMed  Google Scholar 

  • Boyson JE, Iwanaga KK, Golos TG, Watkins DI (1997) Identification of a novel MHC class I gene, Mamu-AG, expressed in the placenta of a primate with an inactivated G locus. J Immunol 159:3311–3321

    CAS  PubMed  Google Scholar 

  • Boyson JE, Iwanaga KK, Urvater JA, Hughes AL, Golos TG, Watkins DI (1999) Evolution of a new non-classical MHC class I locus in two Old World primate species. Immunogenetics 49:86–98

    Article  CAS  PubMed  Google Scholar 

  • Castro MJ, Morales P, Fernandez-Soria V, Suarez B, Recio MJ, Alvarez M, Martin-Villa M, Arnaiz-Villena A (1996) Allelic diversity at the primate MHC-G locus: exon 3 bears stop codons in all Cercopithecinae sequences. Immunogenetics 43:327–336

    Article  CAS  PubMed  Google Scholar 

  • Chu W, Yang Y, Geraghty DE, Hunt JS (1999a) Interferons enhance HLA-G mRNA and protein in transfected mouse fibroblasts. Reprod Immunol 42:1–15

    Article  CAS  Google Scholar 

  • Chu W, Gao J, Murphy WJ, Hunt JS (1999b) A candidate interferon-gamma activated site (GAS element) in the HLA-G promoter does not bind nuclear proteins. Hum Immunol 60:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Conne B, Stutz A, Vassalli JD (2000) The 3′ untranslated region of messenger RNA: a molecular “hot-spot” for pathology? Nat Med 6:637–641

    Article  CAS  PubMed  Google Scholar 

  • Dey A, Thornton AM, Lonergan M, Weissman SM, Chamberlain JW, Ozato K (1992) Occupancy of upstream regulatory sites in vivo coincides with major histocompatibility complex class I gene expression in mouse tissues. Mol Cell Biol 12:3590–3599

    CAS  PubMed  Google Scholar 

  • Elsen PJ van den, Peijnenburg A, van Eggermond M, Gobin SJP (1998a) Shared regulatory elements in the promoters of MHC class I and class II genes. Immunol Today 19:308–312

    Article  PubMed  Google Scholar 

  • Elsen PJ van den, Gobin SJP, van Eggermond M, Peijnenburg A (1998b) Regulation of MHC class I and II gene transcription: differences and similarities. Immunogenetics 48:208–221

    Article  PubMed  Google Scholar 

  • Gobin SJ, van den Elsen PJ (2000) Transcriptional regulation of the MHC class Ib genes HLA-E, HLA-F and HLA-G. Hum Immunol 61:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Gobin SJ, Peijnenburg A, van Eggermond M, van Zutphen M, van den Berg R, van den Elsen PJ (1998) The RFX complex is crucial for the constitutive and CIITA-mediated transactivation of MHC class I and β2-microglobulin genes. Immunity 9:531–541

    Article  CAS  PubMed  Google Scholar 

  • Gobin SJP, Keijsers V, Cheong C, van Zutphen M, van den Elsen PJ (1999) Transcriptional regulation of HLA-G. Transplant Proc 31:1857–1859

    Article  CAS  PubMed  Google Scholar 

  • Grzybowska EA, Wilczynska A, Siedlecki JA (2001) Regulatory function of 3′ UTRs. Biochem Biophys Res Commun 288:291–295

    Article  CAS  PubMed  Google Scholar 

  • Hakem R, Le Bouteiller P, Jezo-Bremond A, Harper K, Campese D, Lemonnier FA (1991) Differential regulation of HLA-A3 and HLA-B7 MHC class I genes by interferon is due to two nucleotide differences in their interferon response sequences. J Immunol 147:2384–2390

    CAS  PubMed  Google Scholar 

  • Hunt JS (ed) (1996) HLA and the maternal-fetal relationship. RG Landes, Austin

    Google Scholar 

  • Hunt JS (2001) Major histocompatibility complex antigens in reproduction. In: Glasser S, Aplin J, Giudice L, Tabibzadeh S (eds) The endometrium. Harwood Academic, London, pp 392–402

    Google Scholar 

  • Hunt JS, Fishback JL, Andrews GK, Wood GW (1988) Expression of class I HLA genes by trophoblast cells: analysis by in situ hybridization. J Immunol 140:1293–1299

    CAS  PubMed  Google Scholar 

  • Hunt JS, Fishback JL, Chumbley G, Loke YW (1990) Identification of class I mRNA in human first trimester trophoblast cells by in situ hybridization. J Immunol 144:4420–4425

    CAS  PubMed  Google Scholar 

  • Hunt JS, Petroff MG, Morales P, Sedlmayr P, Geraghty DE, Ober C (2000) HLA-G in reproduction: studies on the maternal-fetal interface. Hum Immunol 61:1113–1117

    Article  CAS  PubMed  Google Scholar 

  • Hutter H, Dohr G (1998) HLA expression on immature and mature human germ cells. J Reprod Immunol 38:101–122

    Article  CAS  PubMed  Google Scholar 

  • Hviid TVF, Hylenius S, Rørbye C, Nielsen LG (2003) HLA-G variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics 55:63–79

    CAS  PubMed  Google Scholar 

  • Korber B, Hood L, Stroynowski I (1987) Regulation of murine class I genes by Interferons is controlled by regions located both 5′ and 3′ to the transcription initiation site. Proc Natl Acad Sci USA 84:3380–3384

    CAS  PubMed  Google Scholar 

  • Langat DK, Hunt JS (2002) Do non-human primates provide appropriate animal models for studies on the function of HLA-G? Biol Reprod 67:1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Langat DK, Morales PJ, Fazleabas AT, Mwenda JM, Hunt JS (2002) Baboon placentas express soluble and membrane-bound Paan-AG proteins encoded by alternatively spliced transcripts of the class Ib major histocompatibility complex gene, Paan-AG. Immunogenetics 54:164–173

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre S, Berrih-Aknin S, Adrian F, Moreau P, Poea S, Gourand L, Dausset J, Carosella ED, Paul P (2001) A specific interferon-stimulated response element of the distal HLA-G promoter binds interferon-regulatory factor 1 and mediates enhancement of this non-classical class I gene by interferon-β. J Biol Chem 276:6133–6139

    Article  CAS  PubMed  Google Scholar 

  • Martin BK, Chin KC, Olsen JC, Skinner CA, Dey A, Ozato K, Ting JP (1997) Induction of MHC class I expression by the MHC class II transactivator CIITA. Immunity 6:591–600

    Article  CAS  PubMed  Google Scholar 

  • Ober C, Aldrich C, Chervoneva I, Billstrand C, Rahimov F, Gray HL, Hyslop T (2003) Variation in the HLA-G promoter region influences miscarriage rates. Am J Hum Genet 72:1425–1435

    Article  CAS  PubMed  Google Scholar 

  • Ozato K (1994) Control of MHC gene expression. In: Blair E (ed) Modulation of MHC antigen expression and disease. Cambridge University Press, Cambridge

    Google Scholar 

  • Rousseau P, Paul P, O’Brien M, Dausset J, Carosella ED, Moreau P (2000) The X1 box of HLA-G promoter is a target site for RFX and Sp1 factors. Hum Immunol 61:1132–1137

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CM (1996) Studies on HLA-G transgenic mice. In: Hunt JS (ed) HLA and the maternal-fetal relationship. RG Landes, Austin, pp 109–132

    Google Scholar 

  • Schmidt CM, Orr HT (1993) Maternal/fetal interactions: the role of the MHC class I molecule HLA-G. Crit Rev Immunol 13:207–224

    CAS  PubMed  Google Scholar 

  • Singer DS, Maguire JE (1990) Regulation of the expression of class I MHC genes. Crit Rev Immunol 10:235–257

    CAS  PubMed  Google Scholar 

  • Snyder SR, Waring JF, Zhu SZ, Kaplan S, Schultz J, Ginder GD (2001) A 3′-transcribed region of the HLA-A2 gene mediates posttranscriptional stimulation by interferon-γ. J Immunol 166:3966–3974

    CAS  PubMed  Google Scholar 

  • Solier C, Mallet V, Lenfant F, Bertrand A, Hucheng A, Le Bouteiller P (2001) HLA-G unique promoter region: functional implications. Immunogenetics 53:617–625

    Article  CAS  PubMed  Google Scholar 

  • Ting PJ, Baldwin AS (1993) Regulation of MHC gene expression. Curr Opin Immunol 5:8–16

    Article  CAS  PubMed  Google Scholar 

  • Wainwright SD, Andrew-Biro PA, Holmes CH (2000) HLA-F is a predominantly empty, intracellular, TAP-associated MHC class Ib protein with a restricted expression pattern. J Immunol 164:319–328

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded in part by CONRAD/CICCR grant no. 640510 and NIH grant POI HD39878 (Project III) to J.S.H. Support was provided by the Kansas Reproductive Sciences Center and the Kansas Biomedical Research Infrastructure Network grant (RR16475, NCRR, J.S.H, Principal Investigator).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan S. Hunt.

Additional information

The nucleotide sequence data reported in this paper are available in the DDBJ/EMBL/GenBank databases under accession numbers AY434095, AY434096, AY434097 and AY434103.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langat, D.K., Morales, P.J., Fazleabas, A.T. et al. Potential regulatory sequences in the untranslated regions of the baboon MHC class Ib gene, Paan-AG, more closely resemble those in the human MHC class Ia genes than those in the class Ib gene, HLA-G. Immunogenetics 56, 657–666 (2004). https://doi.org/10.1007/s00251-004-0727-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-004-0727-5

Keywords

Navigation