Skip to main content
Log in

Molecular cloning and characterization of calreticulin from rainbow trout (Oncorhynchus mykiss)

  • Brief Communication
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Calreticulin (CRT) is a highly conserved, high-capacity, calcium-binding protein shared among vertebrates, invertebrates and higher plants. Its biological importance, highlighted by its highly conserved nature, is supported by its crucial physiological and immunological functions. Within the endoplasmic reticulum, CRT serves as a calcium modulator and a lectin-like chaperone for glycoproteins, especially class I major histocompatibility receptors. To date, CRT cDNA clones have been isolated from a wide range of phyla, yet little is known about this gene in fish species, the largest and most diverse group of jawed vertebrates. This report describes the cloning of a cDNA from a rainbow trout pronephros library that encodes a deduced 419-amino acid protein, which includes a predicted 20-amino acid signal peptide and has a 69% amino acid identity to both murine and human CRT. Like its mammalian counterparts, this cDNA contains conserved cysteine residues believed to form a disulphide bond, a proline-rich region which includes a potential N-glycosylation site, and a highly acidic C-terminal domain terminating with the endoplasmic reticulum retrieval sequence, KDEL. Reverse transcription tissue-distribution assays indicate it is ubiquitously expressed in all tissues tested with highest expression in liver, while Southern blotting indicates it is a single copy gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arosa FA, de Jesus O, Porto G, Carmo AM, de Sousa M (1999) Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules. J Biol Chem 274:16917–16922

    Article  CAS  PubMed  Google Scholar 

  • Coppolino MG, Dedhar S (1998) Calreticulin. Int J Biochem Cell Biol 30:553–558

    Article  CAS  PubMed  Google Scholar 

  • Dedhar S, Rennie PS, Shago M, Hagesteijn CY, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ, et al (1994) Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367:480–483

    CAS  PubMed  Google Scholar 

  • Dixon B, Shum B, Adams E J, Magor KE, Hedrick RP, Muir DG, Parham P (1998) CK-1, a putative chemokine of rainbow trout (Oncorhynchus mykiss). Immunol Rev 166:341–348

    CAS  PubMed  Google Scholar 

  • Eggleton P, Lieu TS, Zappi EG, Sastry K, Coburn J, Zaner KS, Sontheimer RD, Capra JD, Ghebrehiwet B, Tauber AI (1994) Calreticulin is released from activated neutrophils and binds to C1q and mannan-binding protein. Clin Immunol Immunopathol 72:405–409

    Article  CAS  PubMed  Google Scholar 

  • Ellgaard L, Riek R, Herrmann T, Guntert P, Braun D, Helenius A, Wüthrich K (2001) NMR structure of the calreticulin P-domain. Proc Natl Acad Sci USA 98:3133–3138

    Article  CAS  PubMed  Google Scholar 

  • Fliegel L, Burns K, MacLennan DH, Reithmeier RA, Michalak M (1989) Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 264:21522–21528

    CAS  PubMed  Google Scholar 

  • Fraser SA, Michalak M, Welch WH, Hudig D (1998) Calreticulin, a component of the endoplasmic reticulum and of cytotoxic lymphocyte granules, regulates perforin-mediated lysis in the hemolytic model system. Biochem Cell Biol 76:881–887

    Article  CAS  PubMed  Google Scholar 

  • Fraser SA, Karimi R, Michalak M, Hudig D (2000) Perforin lytic activity is controlled by calreticulin. J Immunol 164:4150–4155

    CAS  PubMed  Google Scholar 

  • Fujiki K, Gauley J, Bols N, Dixon B (2002) Cloning and characterization of cDNA clones encoding CD9 from Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Immunogenetics 54:604–609

    Google Scholar 

  • Garcia-Castillo JPP, Mulero V, Meseguer J (2002) Molecular cloning and expression analysis of tumor necrosis factor alpha from a marine fish reveal its constitutive expression and ubiquitous nature. Immunogenetics 54:200–207

    Article  CAS  PubMed  Google Scholar 

  • Hansen JD (1997) Characterization of rainbow trout terminal deoxynucleotidyl transferase structure and expression. TdT and RAG1 co-expression define the trout primary lymphoid tissues. Immunogenetics 46:367–375

    CAS  PubMed  Google Scholar 

  • Hansen JD, Strassburger P (2000) Description of an ectothermic TCR coreceptor, CD8 a, in rainbow trout. J Immunol 164:3132–3139

    CAS  PubMed  Google Scholar 

  • Højrup P, Roepstorff P, Houen G (2001) Human placental calreticulin characterization of domain structure and post-translational modifications. Eur J Biochem 268:2558–2565

    Article  PubMed  Google Scholar 

  • Jethmalani SM, Henle KJ (1998) Calreticulin associates with stress proteins: implications for chaperone function during heat stress. J Cell Biochem 69:30–43

    Article  CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    CAS  PubMed  Google Scholar 

  • Li Z, Komatsu S (2000) Molecular cloning and characterization of calreticulin, a calcium-binding protein involved in the regeneration of rice-cultured suspension cells. Eur J Biochem 267:737–745

    Article  CAS  Google Scholar 

  • McCauliffe DP, Yang Y, Wilson J, Sontheimer RD, Capra D (1992) The 5′ flanking region of human calreticulin gene shares homology with the human GRP78, GRP94, and protein disulfide isomerase promoters. J Biol Chem 267:2557–2562

    CAS  PubMed  Google Scholar 

  • Michalak M, Corbett EF, Mesaili N, Nakamura K, Opas M (1999) Calreticulin: one protein, one gene, many functions. J Biochem 344:281–292

    Article  CAS  Google Scholar 

  • Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    CAS  Google Scholar 

  • Ostwald TJ, McLennan DH (1974) Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 249:974–979

    CAS  PubMed  Google Scholar 

  • Peterson JR, Ora A, Van PN, Helenius A (1995) Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell 6:1173–1184

    CAS  PubMed  Google Scholar 

  • Rodrigues PN, Dixon B, Roelofs J, Rombout JH, Egberts E, Pohajdak B, Stet RJ (1998) Expression and temperature-dependent regulation of the beta2-microglobulin (Cyca-B2m) gene in a cold-blooded vertebrate, the common carp (Cyprinus carpio L.). Dev Immunol 5:263–275

    CAS  PubMed  Google Scholar 

  • Rojiani MV, Finlay BB, Gray V, Dedhar S (1991) In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin alpha subunits. Biochemistry 30:9859–9866

    CAS  PubMed  Google Scholar 

  • Rokeach LA, Haselby JA, Meilof JF, Smeenk RJ, Unnasch TR, Greene BM, Hoch S (1991) Characterization of the autoantigen calreticulin. J Immunol 147:3031–3039

    CAS  PubMed  Google Scholar 

  • Rubinstein AL, Lee D, Luo R, Henion PD, Halpern ME (2000) Genes dependent on zebrafish cyclops function identified by AFLP differential gene expression screen. Genesis 26:86–97

    CAS  PubMed  Google Scholar 

  • Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P (1996) Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5:103–114

    PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schmidtke J, Kandt I (1981) Single-copy DNA relationships between diploid and tetraploid teleostean fish species. Chromosoma 83:191–197

    CAS  PubMed  Google Scholar 

  • Shum BP, Rajalingam R, Magor KE, Azumi K, Carr WH, Dixon B, Stet RJ, Adkison MA, Hedrick RP, Parham P (1999) A divergent non-classical class I gene conserved in salmonids. Immunogenetics 49:479–490

    CAS  PubMed  Google Scholar 

  • Smith MJ, Koch GL (1989) Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium-binding ER/SR protein. EMBO J 8:3581–3586

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1974) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Tom McConnell for kindly sharing sequence data prior to publication and Dr. Roy Sundick for providing the rainbow trout cDNA library. This work was supported in part by grant number CRD226816-99 to B.D. from the Natural Sciences and Engineering Research Council of Canada, AquaBounty Canada, Inc. and the AquaNet Network Centre of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Dixon.

Additional information

The nucleotide sequences reported here have been submitted to the GenBank database with the following accession numbers: AY372389 and AY372527. The accession numbers of CRT sequences retrieved in this study are as follow: Atlantic salmon, EST-BI468042; channel catfish, AY342298 (sequence courtesy of T. McConnell, East Carolina University); zebrafish, AF195882; zebrafish MGC:55972 clone, BC046906; lamprey fragment, AB025328; hagfish fragment, AB025323; mouse, BC003453; C. elegans, NM_072174; corn, AF190454: Arabidopsis, NM_104513; Dictyostelium, U36937; human, BT007448; and Xenopus, BC046699.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kales, S., Fujiki, K. & Dixon, B. Molecular cloning and characterization of calreticulin from rainbow trout (Oncorhynchus mykiss). Immunogenetics 55, 717–723 (2004). https://doi.org/10.1007/s00251-003-0631-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-003-0631-4

Keywords

Navigation