Skip to main content

Advertisement

Log in

Marangoni effect and cell spreading

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Cells are very sensitive to the shear stress (SS). However, undesirable SS is generated during physiological process such as collective cell migration (CCM) and influences the biological processes such as morphogenesis, wound healing and cancer invasion. Despite extensive research devoted to study the SS generation caused by CCM, we still do not fully understand the main cause of SS appearance. An attempt is made here to offer some answers to these questions by considering the rearrangement of cell monolayers. The SS generation represents a consequence of natural and forced convection. While forced convection is dependent on cell speed, the natural convection is induced by the gradient of tissue surface tension. The phenomenon is known as the Marangoni effect. The gradient of tissue surface tension induces directed cell spreading from the regions of lower tissue surface tension to the regions of higher tissue surface tension and leads to the cell sorting. This directional cell migration is described by the Marangoni flux. The phenomenon has been recognized during the rearrangement of (1) epithelial cell monolayers and (2) mixed cell monolayers made by epithelial and mesenchymal cells. The consequence of the Marangoni effect is an intensive spreading of cancer cells through an epithelium. In this work, a review of existing literature about SS generation caused by CCM is given along with the assortment of published experimental findings, to invite experimentalists to test given theoretical considerations in multicellular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alert R, Trepat X (2020) Physical models of collective cell migration. Annu Rev Condens Matter Phys 11:77–101. https://doi.org/10.1146/annurev-conmatphys-031218-013516

    Article  Google Scholar 

  • Barriga EH, Mayor R (2019) Adjustable viscoelasticity allows for efficient collective cell migration. Sem Cell Dev Biol 93:55–68

    Google Scholar 

  • Barriga EH, Franze K, Charras G, Mayor R (2018) Tissue stiffening coordinate morphogenesis by triggering collective cell migration in vivo. Nature 554:523–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bathe M, Heussinger C, Claessens MMAE, Bausch AR, Frey E (2008) Cytoskeletal bundle mechanics. Biophys J 94:2955–2964

    CAS  PubMed  Google Scholar 

  • Beysens DA, Forgacs G, Glazier JA (2000) Embryonic tissues are viscoelastic materials. Canad J Phys 78:243–251

    CAS  Google Scholar 

  • Broedersz CP, MacKintosh FC (2014) Modeling semiflexible polymer networks. Rev Mod Phys 86(3):995–1036

    CAS  Google Scholar 

  • Brückner DB, Arlt N, Fink A, Ronceray P, Rädler JO, Broedersz CP (2021) Learning the dynamics of cell–cell interactions in confined cell migration. PNAS 118(7):e2016602118

    PubMed  PubMed Central  Google Scholar 

  • Campàs O, Mammoto T, Hasso S, Sperling RA, O’Connell D, Bischof AG, Maas R, Weitz DA, Mahadevan L, Ingber DE (2013) Quantifying cell-generated mechanical forces within living embryonic tissues. Nat Methods. https://doi.org/10.1038/nmMeth.2761

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen T, Saw TB, Mège RM, Ladoux B (2018) Mechanical forces in cell monolayers. J Cell Sci 131:jcs218156

    PubMed  Google Scholar 

  • Clark AG, Vignjevic DM (2015) Models of cancer cell invasion and the rule of microenvironment. Curr Op Cell Biol 36:13–22

    CAS  PubMed  Google Scholar 

  • Deguchi S, Ohashi T, Sato M (2006) Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells. J Biomech 39:2603–2610

    PubMed  Google Scholar 

  • Delon LC, Guo Z, Oszmiana A, Chien CC, Gibson R, Prestidge C, Thierry B (2019) A systematic investigation of the effect of the fluid shear stress on CaCo2 cells towards the optimization of epithelial organ-on-chip models. Biomat 225:119521

    CAS  Google Scholar 

  • Devanny AJ, Vancura MB, Kaufman LJ (2021) Exploiting differential effects of actomyosin contractility to control cell sorting among breast cancer cells. Mol Biol Cell. https://doi.org/10.1091/mbc.E21-07-0357

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolega ME, Delarue M, Ingremeau F, Prost J, Delon A, Cappello G (2017) Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat Comm 8(14056):1–9

    Google Scholar 

  • Eldridge WJ, Ceballos S, Shah T, Park HS, Steelman ZA, Zauscher S, Wax A (2019) Shear modulus measurement by quantitative phase imaging and correlation with atomic force microscopy. Biophys J 117:696–705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emon B, Li Z, Joy MSH, Doha U, Kosari F, Saif MTAM (2021) A novel method for sensor-based quantification of single/multicellular force dynamics and stiffening in 3D matrices. Sci Adv 7:eabf2629 (advances.sciencemag.org/cgi/content/full/7/15/eabf2629/DC1)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flitney EW, Kuczmarski ER, Adam SA, Goldman RD (2009) Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments. FASEB J 23(7):2110–2119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009

    CAS  PubMed  Google Scholar 

  • Green Y, Fredberg JJ, Butler JP (2020) Relationship between velocities, tractions, and intercellular stresses in the migrating epithelial monolayer. Phys Rev E 101:062405. https://doi.org/10.1103/PhysRevE.101.062405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guevorkian K, Gonzalez-Rodriguez D, Carlier C, Dufour S, Brochard-Wyart F (2011) Mechanosensitive shivering of model tissues under controlled aspiration. PNAS 108(33):13387–13392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heine P, Lippoldt J, Reddy GA, Katira P, Kaes J (2021) Anomalous cell sorting behavior in mixed monolayers discloses hidden system complexities. New J Phys 23:043034

    Google Scholar 

  • Janmey PA, Mccormick ME, Rammensee S, Leight JL, Georges PC, Mackintosh FC (2007) Negative normal stress in semiflexible biopolymer gels. Nat Mat 6:48–51

    CAS  Google Scholar 

  • Karbalaei A, Kumar R, Cho HJ (2016) Thermocapillarity in microfluidics—a review. Micromachines 7:13. https://doi.org/10.3390/mi7010013

    Article  PubMed Central  Google Scholar 

  • Kassianidou E, Kumar S (2015) A biomechanical perspective on stress fiber structure and function. Biochim Biophys Acta 1853:3065–3074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalilgharibi N, Fouchard J, Asadipour N, Yonis A, Harris A, Mosaff P, Fujita Y, Kabla A, Baum B, Muñoz JJ, Miodownik M, Charras G (2019) Stress relaxation in epithelial monolayers is controlled by actomyosin. Nat Phys 15:839–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HG, Lee KJ (2021) Neighbor-enhanced diffusivity in dense, cohesive cell populations. PLOS Comp Biol. https://doi.org/10.1371/journal.pcbi.1009447

    Article  Google Scholar 

  • Lee P, Wolgemuth CW (2011) Wounds without Purse tiring or signaling. PLoS Comput Biol 7(3):e1002007 (1-8)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Wu PH, Jack Rory Staunton JR, Ros R, Longmore GD, Wirtz D (2012) Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer. Biophys J 102:2731–2741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28:312–316

    CAS  PubMed  Google Scholar 

  • Lin SZ, Ye S, Xu GK, Li B, Feng XQ (2018) Dynamic migration modes of collective cells. Biophys J 115:1826–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, Liu J, Yan Z, Liu X (2016) Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget 7(22):32876–32892

    PubMed  PubMed Central  Google Scholar 

  • Marmottant P, Mgharbel A, Kafer J, Audren B, Rieu JP, Vial JC, van der Sanden B, Maree AFM, Graner F, Delanoe-Ayari H (2009) The role of fluctuations and stress on the effective viscosity of cell aggregates. PNAS 106(41):17271–17275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed D, Park CY, Fredberg JJ, Weitz DA (2021) Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin. Sci Rep 11:16279. https://doi.org/10.1038/s41598-021-95740-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molladavoodi S, Robichaud M, Wulff D, Gorbet M (2017) Corneal epithelial cells exposed to shear stress show altered cytoskeleton and migratory behaviour. PLoS One 12(6):e0178981 (1–16)

    PubMed  PubMed Central  Google Scholar 

  • Mombach JCM, Robert D, Graner F, Gillet G, Thomas GL, Idiart M, Rieu JP (2005) Rounding of aggregates of biological cells: experiments and simulations. Phys A 352:525–534

    Google Scholar 

  • Murray JD, Maini PK, Tranquillo RT (1988) Mechanochemical models for generating biological pattern and form in development. Phys Rep 171(2):59–84

    Google Scholar 

  • Nnetu KD, Knorr M, Kaes J, Zink M (2012) The impact of jamming on boundaries of collectively moving weak-interacting cells. New J Phys 14:115012

    Google Scholar 

  • Notbohm J, Banerjee S, Utuje KJC, Gweon B, Jang H, Park Y, Shin J, Butler JP, Fredberg JJ, Marchetti MC (2016) Cellular contraction and polarization drive collective cellular motion. Biophys J 110:2729–2738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pajic-Lijakovic I (2021) Basic concept of viscoelasticity. In: Pajic-Lijakovic I, Barriga E (eds) Viscoelasticity and collective cell migration. Academic Press, p 21

    Google Scholar 

  • Pajic-Lijakovic I, Milivojevic M (2015) Actin cortex rearrangement caused by coupling with the lipid bilayer-modeling considerations. J Membr Biol 248(2):337–347

    CAS  PubMed  Google Scholar 

  • Pajic-Lijakovic I, Milivojevic M (2019a) Long-time viscoelasticity of multicellular surfaces caused by collective cell migration—multi-scale modeling considerations. Sem Cell Dev Biol 93:87–96

    Google Scholar 

  • Pajic-Lijakovic I, Milivojevic M (2019b) Jamming state transition and collective cell migration. J Biol Eng 13:73. https://doi.org/10.1186/s13036-019-0201-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pajic-Lijakovic I, Milivojevic M (2020a) Viscoelasticity of multicellular systems caused by collective cell migration: dynamics at the biointerface. Europ Biophys J 49:253–265

    CAS  Google Scholar 

  • Pajic-Lijakovic I, Milivojevic M (2020b) Collective cell migration and residual stress accumulation: rheological consideration. J Biomech 108:109898

    PubMed  Google Scholar 

  • Pajic-Lijakovic I, Milivojevic M (2020c) Mechanical oscillations in 2D collective cell migration: the elastic turbulence. Front Phys 8:585681. https://doi.org/10.3389/fphy.2020.585681

    Article  Google Scholar 

  • Pajic-Lijakovic I, Milivojevic M (2021) Multiscale nature of cell rearrangement caused by collective cell migration. Europ Biophys J 50:1–14

    Google Scholar 

  • Pajic-Lijakovic I, MIlivojevic M (2022) Viscoelasticity and cell swirling motion. Adv Appl Mech. https://doi.org/10.1016/bs.aams.2022.05.002

    Google Scholar 

  • Patel NG, Nguyen A, Xu N, Ananthasekar S, Alvarez DF, Stevens T, Tambe DT (2020) Unleashing shear: role of intercellular traction and cellular moments in collective cell migration. Biochem Biophys Res Comm 522:279–285

    CAS  PubMed  Google Scholar 

  • Peyret G, Mueller R, Alessandro J, Begnaud S, Marcq P, Mège RM, Yeomans JM, Doostmohammadi A, Ladoux B (2019) Sustained oscillations of epithelial cell sheets. Biophys J 117:1–15

    Google Scholar 

  • Pitenis AA, Sawyer G (2020) Soft textured implants: roughness, friction, and the complications. Biotribology 22:100127. https://doi.org/10.1016/j.biotri.2020.100127

    Article  Google Scholar 

  • Pitenis AA, Urueña JM, Hart SM, O’Bryan CS, Marshall SL, Levings PP, Angelini TE, Sawyer WG (2018) Friction-induced inflammation. Tribol Lett. https://doi.org/10.1007/s11249-018-1029-7

    Article  Google Scholar 

  • Rahman MH, Xiao Q, Zhao S, Qu F, Chang C, Wei AC, Ho YP (2018) Demarcating the membrane damage for the extraction of functional mitochondria. Microsyst Nanoeng 4:39. https://doi.org/10.1038/s41378-018-0037-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Cellia JP, Mensah LB, Mai Z, Demirci U, Hasan T (2013) Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. PNAS 110(22):E1974–E1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra-Picamal X, Conte V, Vincent R, Anon E, Tambe DT, Bazellieres E, Butler JP, Fredberg JJ, Trepat X (2012) Mechanical waves during tissue expansion. Nat Phys 8(8):628–634

    CAS  Google Scholar 

  • Shellard A, Mayor R (2019) Supracellular migration—beyond collective cell migration. J Cell Sci 132:jcs226142

    CAS  PubMed  Google Scholar 

  • Shellard A, Mayor R (2020) All roads lead to directional cell migration. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2020.08.002

    Article  PubMed  Google Scholar 

  • Stirbat TV, Mgharbel A, Bodennec S, Ferri K, Mertani HC, Rieu JP, Delanoë-Ayari H (2013) Fine tuning of tissues’ viscosity and surface tension through contractility suggests a new role for a-catenin. PLoS One 8(2):e52554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tambe DT, Croutelle U, Trepat X, Park CY, Kim JH, Millet E, Butler JP, Fredberg JJ (2013) Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLoS One 8(2):e55172 (1–13)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JM, Liu GH, Fang YL, Li WK (2016) Marangoni effect in nonequilibrium multiphase system of material processing. Rev Chem Eng. https://doi.org/10.1515/revce-2015-0067

    Article  Google Scholar 

  • Wu PH, Ben Aroush DR, Asnacios A, Chen WC, Dokukin ME, Doss BL, Durand P, Ekpenyong A, Guck J, Guz NV et al (2018) Comparative study of cell mechanics methods. Nat Methods 15(7):491–498. https://doi.org/10.1038/s41592-018-0015-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JS, Jiang J, Chen BJ, Wang K, Tang YL, Liang XH (2021) Plasticity of cancer cell invasion: patterns and mechanisms. Transl Oncol 14:100899

    PubMed  Google Scholar 

  • Yamakawa H (1971) Modern Theory of Polymer Solutions. Harper and Row, New York

    Google Scholar 

  • Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, Dedhar S, Derynck R et al (2020) Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev. https://doi.org/10.1038/s41580-020-0237-9

    Article  Google Scholar 

  • Zhang J, Chada NC, Reinhart-King CA (2019) Microscale interrogation of 3D tissue mechanics. Front Bioeng Biotechnol 7:412

    PubMed  PubMed Central  Google Scholar 

  • Zhu M, Tao H, Samani M, Luo M, Wang X, Hopyan S, Suna Y (2020) Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud. PNAS. https://doi.org/10.1073/pnas.1912656117

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Nos. 451-03-68/2020-14/200135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Pajic-Lijakovic.

Ethics declarations

Conflict of interest

The author reports that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajic-Lijakovic, I., Milivojevic, M. Marangoni effect and cell spreading. Eur Biophys J 51, 419–429 (2022). https://doi.org/10.1007/s00249-022-01612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-022-01612-1

Keywords

Navigation