Skip to main content
Log in

Quinidine partially blocks mitochondrial voltage-dependent anion channel (VDAC)

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Quinidine is an antiarrhythmic drug commonly used for the treatment of cardiac ailments. It affects oxidative phosphorylation, calcium uptake, and ion channels of mitochondria. We have investigated the interaction of Quinidine and mitochondrial voltage-dependent anion channel (VDAC). VDAC was purified from neuronal tissue of Wistar rats and in vitro bilayer electrophysiology experiments were performed on it. 50-mM Quinidine treatment on VDAC leads to a sudden drop in its conductance. The dose of Quinidine leading to a half-maximal current through a single-channel VDAC was calculated using Quinidine at different concentrations. In silico molecular docking studies using Autodock-4.2 software indicate interaction between Quinidine and VDAC. Docking results demonstrate the interaction of Quinidine and VDAC on its Glutamic acid residue (Glu-206 of VDAC). Fluorescence spectroscopy results on Quinidine and Glutamic acid interaction show an increase in the intensity and wavelength of Quinidine fluorescence, whereas no interaction between Quinidine and Cysteine was observed. This further supports the Glutamic acid and Quinidine interaction. In conclusion, we report Quinidine partially blocks VDAC due to the interaction of Glutamic acid and Quinidine in the channel pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerman MJ (1998) The long QT syndrome: ion channel diseases of the heart. Mayo Clin Proc 73:250–269

    CAS  PubMed  Google Scholar 

  • Almotrefi AA (1993) Effects of class I antiarrhythmic drugs on mitochondrial ATPase activity in guinea pig heart preparations. Gen Pharmac Vasc Syst 24:233–237

    CAS  Google Scholar 

  • Bachmann E, Weber E, Zbinden G (1986) Biochemical mechanisms of quinidine cardiotoxicity. J Cardiovasc Pharmacol 8:826–831

    CAS  PubMed  Google Scholar 

  • Banerjee J, Ghosh S (2004a) Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem Biophys Res Commun 323:310–314

    CAS  PubMed  Google Scholar 

  • Banerjee J, Ghosh S (2004b) Interaction of mitochondrial voltage-dependent anion channel from rat brain with plasminogen protein leads to partial closure of the channel. Biochim Biophys Acta 1663:6–8

    CAS  PubMed  Google Scholar 

  • Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA 105:15370–15375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bednarczyk P, Kicinska A, Kominkova V, Ondrias K, Dolowy K, Szewczyk A (2004) Quinine inhibits mitochondrial ATP-regulated potassium channel from bovine heart. J Memb Biol 199:63–72

    CAS  Google Scholar 

  • Bera AK, Ghosh S, Das S (1995) Mitochondrial VDAC can be phosphorylated by cyclic AMP-dependent protein kinase. Biochem Biophys Res Commun 209:213–217

    CAS  PubMed  Google Scholar 

  • Bloomer JC, Woods FR, Haddock RE, Lennard MS, Tucker GT (1992) The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J Clin Pharmacol 33:521–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cesar MdC, Wilson JE (2004) All three isoforms of the voltage-dependent anion channel (VDAC1, VDAC2, and VDAC3) are present in mitochondria from bovine, rabbit, and rat brain. Arch Biochem Biophys 422:191–196

    CAS  Google Scholar 

  • Chan JCY, Soh ACK, Kioh DYQ, Li J, Verma C, Koh SK, Beuerman RW, Zhou L, Chan ECY (2018) Reactive metabolite-induced protein glutathionylation: a potentially novel mechanism underlying acetaminophen hepatotoxicity. MCP 17:2034–2050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colombini M (1979) A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279:643–645

    CAS  PubMed  Google Scholar 

  • Colombini M (1989) Voltage gating in the mitochondrial channel, VDAC. J Memb Biol 111:103–111

    CAS  Google Scholar 

  • Colombini M (2009) The published 3D structure of the VDAC channel: native or not? Trends in biochemical sciences 34:382–389

    CAS  PubMed  Google Scholar 

  • Colombini M (2012) VDAC structure, selectivity, and dynamics. Biochim Biophys Acta 1818:1457–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Pinto V, Al Jamal JA, Palmieri F (1993) Location of the dicyclohexylcarbodiimide-reactive glutamate residue in the bovine heart mitochondrial porin. J Biol Chem 268:12977–12982

    CAS  PubMed  Google Scholar 

  • De Pinto V, Messina A, Accardi R, Aiello R, Guarino F, Tomasello MF, Tommasino M, Tasco G, Casadio R, Benz R, De Giorgi F, Ichas F, Baker M, Lawen A (2003) New functions of an old protein: the eukaryotic porin or voltage dependent anion selective channel (VDAC). Ital J Biochem 52:17–24

    PubMed  Google Scholar 

  • De Pinto V, Messina A, Lane DJ, Lawen A (2010) Voltage-dependent anion-selective channel (VDAC) in the plasma membrane. FEBS Lett 584:1793–1799

    PubMed  Google Scholar 

  • De Pinto V, Reina S, Guarino F, Messina A (2008) Structure of the voltage dependent anion channel: state of the art. J Bioenerg Biomemb 40:139–147

    Google Scholar 

  • Diwan JJ (1986) Effect of quinine on mitochondrial K+ and Mg++ flux. Biochem Biophys Res Commun 135:830–836

    CAS  PubMed  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    CAS  PubMed  Google Scholar 

  • Gupta R, Ghosh S (2015) Phosphorylation of voltage-dependent anion channel by c-Jun N-terminal Kinase-3 leads to closure of the channel. Biochem Biophys Res Commun 459:100–106

    CAS  PubMed  Google Scholar 

  • Gupta R, Ghosh S (2017) Phosphorylation of purified mitochondrial voltage-dependent anion channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence. Biochim Open 4:78–87

    PubMed  PubMed Central  Google Scholar 

  • Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174:167–172

    CAS  PubMed  Google Scholar 

  • Harrow JA, Dhalla NS (1976) Effects of quinidine on calcium transport activities of the rabbit heart mitochondria and sarcotubular vesicles. Biochem Pharmacol 25:897–902

    CAS  PubMed  Google Scholar 

  • Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Memb Biol 157:271–279

    CAS  Google Scholar 

  • Israelson A, Abu-Hamad S, Zaid H, Nahon E, Shoshan-Barmatz V (2007) Localization of the voltage-dependent anion channel-1 Ca2+-binding sites. Cell Calc 41:235–244

    CAS  Google Scholar 

  • Israelson A, Zaid H, Abu-Hamad S, Nahon E, Shoshan-Barmatz V (2008) Mapping the ruthenium red-binding site of the voltage-dependent anion channel-1. Cell Calc 43:196–204

    CAS  Google Scholar 

  • Jurgens L, Kleineke J, Brdiczka D, Thinnes FP, Hilschmann N (1995) Localization of type-1 porin channel (VDAC) in the sarcoplasmatic reticulum. Biol Chem Hoppe-Seyler 376:685–689

    CAS  PubMed  Google Scholar 

  • Keinan N, Tyomkin D, Shoshan-Barmatz V (2010) Oligomerization of the mitochondrial protein voltage-dependent anion channel is coupled to the induction of apoptosis. Mol Cell Biol 30:5698–5709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komai H, Berkoff HA (1979) Effects of quinidine and propranolol on energy transduction in beef heart mitochondria. Biochem Pharmacol 28:1501–1504

    CAS  PubMed  Google Scholar 

  • Krasnov GS, Dmitriev AA, Lakunina VA, Kirpiy AA, Kudryavtseva AV (2013) Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy. Expert Opin Ther Targets 17:1221–1233

    CAS  PubMed  Google Scholar 

  • Levy S, Azoulay S (1994) Stories about the origin of quinquina and quinidine. J Cardiovasc Electrophysiol 5:635–636

    CAS  PubMed  Google Scholar 

  • Magri A, Karachitos A, Di Rosa MC, Reina S, Conti Nibali S, Messina A, Kmita H, De Pinto V (2019) Recombinant yeast VDAC2: a comparison of electrophysiological features with the native form. FEBS Open Bio 9:1184–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCommis KS, Baines CP (2012) The role of VDAC in cell death: friend or foe? Biochim Biophys Acta 1818:1444–1450

    CAS  PubMed  Google Scholar 

  • Mertins B, Psakis G, Grosse W, Back KC, Salisowski A, Reiss P, Koert U, Essen LO (2012) Flexibility of the N-terminal mVDAC1 segment controls the channel's gating behavior. PloS One 7:e47938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messina A, Reina S, Guarino F, De Pinto V (2012) VDAC isoforms in mammals. Biochim Biophys Acta 1818:1466–1476

    CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nahon E, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2005) Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett 579:5105–5110

    CAS  PubMed  Google Scholar 

  • Nakashima RA (1989) Hexokinase-binding properties of the mitochondrial VDAC protein: inhibition by DCCD and location of putative DCCD-binding sites. J Bioenerg Biomemb 21:461–470

    CAS  Google Scholar 

  • Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomemb 40:171–182

    CAS  Google Scholar 

  • Ransom CB, Sontheimer H (2001) BK channels in human glioma cells. J Neurophysiol 85:790–803

    CAS  PubMed  Google Scholar 

  • Rimmerman N, Ben-Hail D, Porat Z, Juknat A, Kozela E, Daniels MP, Connelly PS, Leishman E, Bradshaw HB, Shoshan-Barmatz V, Vogel Z (2013) Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death. Cell Death Dis 4:e949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rostovtseva TK, Liu T-T, Colombini M, Parsegian VA, Bezrukov SM (2000) Positive cooperativity without domains or subunits in a monomeric membrane channel. Proc Natl Acad Sci 97:7819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rui H, Lee KI, Pastor RW, Im W (2011) Molecular dynamics studies of ion permeation in VDAC. Biophys J 100:602–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon KL, Maldonado EN, Lemasters JJ, Rostovtseva TK, Bezrukov SM (2011) Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin. PloS One 6:e25539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu S, Ide T, Yanagida T, Tsujimoto Y (2000) Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275:12321–12325

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS (2015) The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta 1848:2547–2575

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Gincel D (2003) The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys 39:279–292

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A, Arif T (2017) Voltage-dependent anion channel 1 as an emerging drug target for novel anti-cancer therapeutics. Front Oncol 7:154–154

    PubMed  PubMed Central  Google Scholar 

  • Stock L, Hosoume J, Treptow W (2017) Concentration-dependent binding of small ligands to multiple saturable sites in membrane proteins. Sci Rep 7:5734

    PubMed  PubMed Central  Google Scholar 

  • Teijido O, Ujwal R, Hillerdal CO, Kullman L, Rostovtseva TK, Abramson J (2012) Affixing N-terminal alpha-helix to the wall of the voltage-dependent anion channel does not prevent its voltage gating. J Biol Chem 287:11437–11445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thinnes FP (1992) Evidence for extra-mitochondrial localization of the VDAC/porin channel in eucaryotic cells. J Bioenerg Biomemb 24:71–75

    CAS  Google Scholar 

  • Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA 105:17742–17747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, Smith R, Lessnick SL, Sahasrabudhe S, Stockwell BR (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:864–868

    PubMed  PubMed Central  Google Scholar 

  • Yatani A, Wakamori M, Mikala G, Bahinski A (1993) Block of transient outward-type cloned cardiac K+ channel currents by quinidine. Circ Res 73:351–359

    CAS  PubMed  Google Scholar 

  • Yu WH, Wolfgang W, Forte M (1995) Subcellular localization of human voltage-dependent anion channel isoforms. J Biol Chem 270:13998–14006

    CAS  PubMed  Google Scholar 

  • Zelcer N, Huisman MT, Reid G, Wielinga P, Breedveld P, Kuil A, Knipscheer P, Schellens JH, Schinkel AH, Borst P (2003) Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ATP binding cassette C2). J Biol Chem 278:23538–23544

    CAS  PubMed  Google Scholar 

  • Zhang XY, Zhang PY (2016) Mitochondria targeting nano agents in cancer therapeutics. Oncol Lett 12:4887–4890

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhendu Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

(See Fig. 8).

Fig. 8
figure 8

Other energetically less favorable models of interaction between Quinidine and VDAC. Three-dimensional representation of VDAC1 (PubMed ID: 2JK4) secondary structure and Ligand (PubChem ID: 441074) showing the region of interaction site (green dots) at a Tyr198 on the pore wall, b Glu62 and Thr63 externally, c Glu68 and Thr69 on the pore mouth, and d Glu192 on the pore mouth. The points of contact between the ligand and the VDAC have been represented by spheres/green dots

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, C., Ghosh, S. Quinidine partially blocks mitochondrial voltage-dependent anion channel (VDAC). Eur Biophys J 49, 193–205 (2020). https://doi.org/10.1007/s00249-020-01426-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01426-z

Keywords

Navigation