Skip to main content

Advertisement

Log in

From biophysics to ‘omics and systems biology

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Recent decades brought a revolution to biology, driven mainly by exponentially increasing amounts of data coming from “’omics” sciences. To handle these data, bioinformatics often has to combine biologically heterogeneous signals, for which methods from statistics and engineering (e.g. machine learning) are often used. While such an approach is sometimes necessary, it effectively treats the underlying biological processes as a black box. Similarly, systems biology deals with inherently complex systems, characterized by a large number of degrees of freedom, and interactions that are highly non-linear. To deal with this complexity, the underlying physical interactions are often (over)simplified, such as in Boolean modelling of network dynamics. In this review, we argue for the utility of applying a biophysical approach in bioinformatics and systems biology, including discussion of two examples from our research which address sequence analysis and understanding intracellular gene expression dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Figure adopted from (Djordjevic et al. 2017)

Fig. 5

Figure adopted from (Djordjevic et al. 2017)

Fig. 6

Modified from (Morozova et al. 2016)

Fig. 7

Figure adapted from (Morozova et al. 2016)

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. W. W. Norton & Company, New York

    Google Scholar 

  • Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168

    Article  CAS  PubMed  Google Scholar 

  • Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913

    Article  CAS  PubMed  Google Scholar 

  • Berg OG, von Hippel PH (1987) Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. J Mol Biol 193:723–750

    Article  CAS  PubMed  Google Scholar 

  • Berg O, von Hippel P (1988a) Selection of DNA binding sites by regulatory proteins. Trends Biochem Sci 13:207–211

    Article  CAS  PubMed  Google Scholar 

  • Berg OG, von Hippel PH (1988b) Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition sites. J Mol Biol 200:709–723

    Article  CAS  PubMed  Google Scholar 

  • Berg J, Willmann S, Lassig M (2004) Adaptive evolution of transcription factor binding sites. BMC Evol Biol 4:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanova E, Djordjevic M, Papapanagiotou I, Heyduk T, Kneale G, Severinov K (2008) Transcription regulation of the type II restriction-modification system AhdI. Nucleic Acids Res 36:1429–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanova E, Zakharova M, Streeter S, Taylor J, Heyduk T, Kneale G, Severinov K (2009) Transcription regulation of restriction-modification system Esp1396I. Nucleic Acids Res 37:3354–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulyk ML (2003) Computational prediction of transcription-factor binding site locations. Genome Biol 5:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulyk ML (2006) DNA microarray technologies for measuring protein–DNA interactions. Curr Opin Biotechnol 17:422–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das MK, Dai HK (2007) A survey of DNA motif finding algorithms. BMC Bioinform 8(Suppl 7):S21

    Article  CAS  Google Scholar 

  • De Jong H, Geiselmann J (2014) Fluorescent reporter genes and the analysis of bacterial regulatory networks international workshop on hybrid systems biology. Springer, pp 27–50

  • de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J (2012) PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genom 13:299

    Article  CAS  Google Scholar 

  • Djordjevic M (2013) Efficient transcription initiation in bacteria: an interplay of protein–DNA interaction parameters. Integr Biol 5:796–806

    Article  CAS  Google Scholar 

  • Djordjevic M, Sengupta AM (2006) Quantitative modeling and data analysis of SELEX experiments. Phys Biol 3:13–28

    Article  CAS  Google Scholar 

  • Djordjevic M, Sengupta AM, Shraiman BI (2003) A biophysical approach to transcription factor binding site discovery. Genome Res 13:2381–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djordjevic M, Djordjevic M, Zdobnov E (2017) Scoring targets of transcription in bacteria rather than focusing on individual binding sites. Front Microbiol 8:2314

    Article  PubMed  PubMed Central  Google Scholar 

  • Favorov AV, Gelfand MS, Gerasimova AV, Ravcheev DA, Mironov AA, Makeev VJ (2005) A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Bioinformatics 21:2240–2245

    Article  CAS  PubMed  Google Scholar 

  • Feklístov A, Sharon BD, Darst SA, Gross CA (2014) Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol 68:357–376

    Article  CAS  PubMed  Google Scholar 

  • Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muñiz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, García-Sotelo JS, López-Fuentes A (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res 39:D98

  • Goldberg GW, Marraffini LA (2015) Resistance and tolerance to foreign elements by prokaryotic immune systems—curating the genome. Nat Rev Immunol 15:717–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzina J, Djordjevic M (2015) Inferring bacteriophage infection strategies from genome sequence: analysis of bacteriophage 7-11 and related phages. BMC Evol Biol 15:1

    Article  CAS  Google Scholar 

  • Helmann JD, Chamberlin MJ (1988) Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872

    Article  CAS  PubMed  Google Scholar 

  • Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15:563–577

    Article  CAS  PubMed  Google Scholar 

  • Homsi D, Gupta V, Stormo G (2009) Modeling the quantitative specificity of DNA-binding proteins from example binding sites. PLoS ONE 4:e6736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagannathan V, Roulet E, Delorenzi M, Bucher P (2006) HTPSELEX–a database of high-throughput SELEX libraries for transcription factor binding sites. Nucleic Acids Res 34:D90

    Article  CAS  PubMed  Google Scholar 

  • Jayaram N, Usvyat DR, Martin AC (2016) Evaluating tools for transcription factor binding site prediction. BMC Bioinform. https://doi.org/10.1186/s12859-016-1298-9

    Article  Google Scholar 

  • Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M (2003) Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19:643–650

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Ren B (2006) Genome-wide analysis of protein-DNA interactions. Annu Rev Genomics Hum Genet 7:81–102

    Article  CAS  PubMed  Google Scholar 

  • Klimuk E, Bogdanova E, Nagornykh M, Rodic A, Djordjevic M, Medvedeva S, Pavlova O, Severinov K (2018) Controller protein of restriction–modification system Kpn2I affects transcription of its gene by acting as a transcription elongation roadblock. Nucleic Acids Res 46:10810–10826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klumpp S, Hwa T (2014) Bacterial growth: global effects on gene expression, growth feedback and proteome partition. Curr Opin Biotechnol 28:96–102

    Article  CAS  PubMed  Google Scholar 

  • Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139:1366–1375

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi I (2001) Behavior of restriction–modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Freddolino PL, Zhang Y (2017) Ab initio protein structure prediction From protein structure to function with bioinformatics. Springer, pp 3–35

  • Levitsky VG, Kulakovskiy IV, Ershov NI, Oshchepkov DY, Makeev VJ, Hodgman T, Merkulova TI (2014) Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data. BMC Genom 15:80

    Article  CAS  Google Scholar 

  • Locke G, Morozov AV (2015) A biophysical approach to predicting protein–DNA binding energetics. Genetics 200:1349–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo D, Hasty J (2006) Dynamics of single-cell gene expression. Mol Syst Biol 2:64

    Article  PubMed  PubMed Central  Google Scholar 

  • McGeehan J, Ball NJ, Streeter S, Thresh S-J, Kneale G (2011) Recognition of dual symmetry by the controller protein C. Esp1396I based on the structure of the transcriptional activation complex. Nucleic Acids Res 40:4158–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morozova N, Sabantsev A, Bogdanova E, Fedorova Y, Maikova A, Vedyaykin A, Rodic A, Djordjevic M, Khodorkovskii M, Severinov K (2016) Temporal dynamics of methyltransferase and restriction endonuclease accumulation in individual cells after introducing a restriction-modification system. Nucleic Acids Res 44:790–800

    Article  CAS  PubMed  Google Scholar 

  • Mruk I, Blumenthal RM (2008) Real-time kinetics of restriction-modification gene expression after entry into a new host cell. Nucleic Acids Res 36:2581–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mruk I, Kobayashi I (2013) To be or not to be: regulation of restriction–modification systems and other toxin–antitoxin systems. Nucleic Acids Res 42:70–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustonen V, Lassig M (2005) Evolutionary population genetics of promoters: predicting binding sites and functional phylogenies. Proc Natl Acad Sci USA 102:15936–15941

    Article  CAS  PubMed  Google Scholar 

  • Mustonen V, Kinney J, Callan CG Jr, Lassig M (2008) Energy-dependent fitness: a quantitative model for the evolution of yeast transcription factor binding sites. Proc Natl Acad Sci USA 105:12376–12381

    Article  PubMed  Google Scholar 

  • Nagornykh M, Bogdanova E, Protsenko A, Solonin A, Zakharova M, Severinov K (2008) Regulation of gene expression in a type II restriction-modification system. Russ J Genet 44:523–532

    Article  CAS  Google Scholar 

  • Narang A, Pilyugin SS (2008) Bistability of the lac operon during growth of Escherichia coli on lactose and lactose + glucose. Bull Math Biol 70:1032–1064

    Article  CAS  PubMed  Google Scholar 

  • Newburger DE, Bulyk ML (2009) UniPROBE: an online database of protein binding microarray data on protein–DNA interactions. Nucleic Acids Res 37:D77–D82

    Article  CAS  PubMed  Google Scholar 

  • Ohno M, Karagiannis P, Taniguchi Y (2014) Protein expression analyses at the single cell level. Molecules 19:13932–13947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paget M, Helmann J (2003) The sigma70 family of sigma factors. Genome Biol 4:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Park PJ (2009) ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips R, Kondev J, Theriot J, Garcia H (2012) Physical biology of the cell. Garland Science, New York

    Book  Google Scholar 

  • Robison K, McGuire A, Church G (1998) A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 284:241–254

    Article  CAS  PubMed  Google Scholar 

  • Rodic A, Blagojevic B, Zdobnov E, Djordjevic M (2017) Understanding key features of bacterial restriction-modification systems through quantitative modeling. BMC Syst Biol 11:377–391

    Article  CAS  PubMed  Google Scholar 

  • Roulet E, Busso S, Camargo A, Simpson A, Mermod N, Bucher P (2002) High-throughput SELEX–SAGE method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol 20:831–835

    Article  CAS  PubMed  Google Scholar 

  • Sandve GK, Drablos F (2006) A survey of motif discovery methods in an integrated framework. Biol Direct 1:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta AM, Djordjevic M, Shraiman BI (2002) Specificity and robustness in transcription control networks. Proc Natl Acad Sci USA 99:2072–2077

    Article  CAS  PubMed  Google Scholar 

  • Shea MA, Ackers GK (1985) The OR control system of bacteriophage lambda: a physical-chemical model for gene regulation. J Mol Biol 181:211–230

    Article  CAS  PubMed  Google Scholar 

  • Sneppen K, Zocchi G (2005) Physics in molecular biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stormo GD (2000) DNA binding sites: representation and discovery. Bioinformatics 16:16–23

    Article  CAS  PubMed  Google Scholar 

  • Stormo GD, Fields DS (1998) Specificity, free energy and information content in protein-DNA interactions. Trends Biochem Sci 23:109–113

    Article  CAS  PubMed  Google Scholar 

  • Stormo GD, Zhao Y (2010) Determining the specificity of protein–DNA interactions. Nat Rev Genet 11:751–760

    Article  CAS  PubMed  Google Scholar 

  • Towsey M, Hogan J, Mathews S, Timms P (2008) The in silico prediction of promoters in bacterial genomes. Genome Inform 21:178–189

    Google Scholar 

  • Vilar JM (2010) Accurate prediction of gene expression by integration of DNA sequence statistics with detailed modeling of transcription regulation. Biophys J 99:2408–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilar JM, Saiz L (2013) Systems biophysics of gene expression. Biophys J 104:2574–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wade JT, Struhl K, Busby SJ, Grainger DC (2007) Genomic analysis of protein–DNA interactions in bacteria: insights into transcription and chromosome organization. Mol Microbiol 65:21–26

    Article  CAS  PubMed  Google Scholar 

  • Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide RNA biochemistry and biotechnology. Springer, Dordrecht, pp 11–43

Download references

Acknowledgements

This work was funded by the Swiss National Science foundation under SCOPES Project Number IZ73Z0_152297, and by the Ministry of Education, Science and Technological Development of the Republic of Serbia under Project Number ON173052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Djordjevic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: Regional Biophysics Conference 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djordjevic, M., Rodic, A. & Graovac, S. From biophysics to ‘omics and systems biology. Eur Biophys J 48, 413–424 (2019). https://doi.org/10.1007/s00249-019-01366-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01366-3

Keywords

Navigation