Skip to main content
Log in

Adaptive resolution simulations of biomolecular systems

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In this review article, we discuss and analyze some recently developed hybrid atomistic–mesoscopic solvent models for multiscale biomolecular simulations. We focus on the biomolecular applications of the adaptive resolution scheme (AdResS), which allows solvent molecules to change their resolution back and forth between atomistic and coarse-grained representations according to their positions in the system. First, we discuss coupling of atomistic and coarse-grained models of salt solution using a 1-to-1 molecular mapping—i.e., one coarse-grained bead represents one water molecule—for development of a multiscale salt solution model. In order to make use of coarse-grained molecular models that are compatible with the MARTINI force field, one has to resort to a supramolecular mapping, in particular to a 4-to-1 mapping, where four water molecules are represented with one coarse-grained bead. To this end, bundled atomistic water models are employed, i.e., the relative movement of water molecules that are mapped to the same coarse-grained bead is restricted by employing harmonic springs. Supramolecular coupling has recently also been extended to polarizable coarse-grained water models with explicit charges. Since these coarse-grained models consist of several interaction sites, orientational degrees of freedom of the atomistic and coarse-grained representations are coupled via a harmonic energy penalty term. The latter aligns the dipole moments of both representations. The reviewed multiscale solvent models are ready to be used in biomolecular simulations, as illustrated in a few examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted with permission from (Zavadlav et al. 2015b). Copyright 2015 American Chemical Society

Fig. 2

Adapted with permission from Zavadlav et al. (2015b). Copyright 2015 American Chemical Society

Fig. 3

Figure reprinted from Zavadlav (2015)

Fig. 4

Figure adapted from Zavadlav et al. (2014a)

Fig. 5

Figure adapted from Zavadlav et al. (2014a)

Fig. 6

Reprinted from Zavadlav et al. (2015a) with the permission of AIP Publishing

Fig. 7

Adapted from Zavadlav et al. (2015a) with the permission of AIP Publishing

Fig. 8

Adapted from Zavadlav et al. (2015a) with the permission of AIP Publishing

Fig. 9

Figure reprinted from Zavadlav et al. (2014b)

Fig. 10

Figure adapted from Zavadlav et al. (2014b)

Fig. 11

Reprinted with permission from Zavadlav et al. (2015b). Copyright 2015 American Chemical Society

Fig. 12

Adapted with permission from Zavadlav et al. (2015b). Copyright 2015 American Chemical Society

Similar content being viewed by others

References

  • Agarwal A, Delle Site L (2015) Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: simulation of liquid water. J Chem Phys 143:094102

    Article  PubMed  CAS  Google Scholar 

  • Agarwal A, Delle Site L (2016) Grand-canonical adaptive resolution centroid molecular dynamics: Implementation and application. Comput Phys Commun 206:26–34

    Article  CAS  Google Scholar 

  • Agarwal A, Wang H, Schütte C, Delle Site L (2014) Chemical potential of liquids and mixtures via adaptive resolution simulation. J. Chem. Phys. 141:034102

    Article  PubMed  CAS  Google Scholar 

  • Alekseevaa U, Winklerc RG, Sutmanna G (2016) Hydrodynamics in adaptive resolution particle simulations: multiparticle collision dynamics. J Comput Phys 314:14–34

    Article  CAS  Google Scholar 

  • Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  • Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struct Biol 17:192–198

    Article  CAS  PubMed  Google Scholar 

  • Bagchi B (2012) From anomalies in neat liquid to structure, dynamics and function in the biological world. Chem Phys Lett 529:1–9

    Article  CAS  Google Scholar 

  • Basdevant N, Borgis D, Ha-Duong T (2007) A coarse-grained protein–protein potential derived from an all-atom force field. J Phys Chem B 111:9390–9399

    Article  CAS  PubMed  Google Scholar 

  • Bereau T, Deserno M (2009) Generic coarse-grained model for protein folding and aggregation. J Chem Phys 130:235106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bevc S (2013) Razvoj računalniških orodij za molekularno modeliranje. PhD thesis, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska

  • Bevc S, Junghans C, Kremer K, Praprotnik M (2013) Adaptive resolution simulation of salt solutions. New J Phys 15:105007

    Article  CAS  Google Scholar 

  • Bevc S, Junghans C, Praprotnik M (2015) Stock: structure mapper and online coarse-graining kit for molecular simulations. J Comput Chem 36:467–477

    Article  CAS  PubMed  Google Scholar 

  • Bock H, Gubbins KE, Klapp SH (2007) Coarse graining of nonbonded degrees of freedom. Phys Rev Lett 98:267801

    Article  CAS  PubMed  Google Scholar 

  • Cameron A (2005) Concurrent dual-resolution Monte Carlo simulation of liquid methane. J Chem Phys 123:234101

    Article  CAS  Google Scholar 

  • Carmichael SP, Shell MS (2012) A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly. J Phys Chem B 116:8383–8393

    Article  CAS  PubMed  Google Scholar 

  • Crow = Columns and Rows of Workstations. http://www.cmm.ki.si/ vrana/. 28 August 2015

  • Chebaro Y, Pasquali S, Derreumaux P (2012) The coarse-grained OPEP force field for non-amyloid and amyloid proteins. J Phys Chem B 116:8741–8752

    Article  CAS  PubMed  Google Scholar 

  • Chopraa G, Summab CM, Levitt M (2008) Solvent dramatically affects protein structure refinement. Proc Natl Acad Sci USA 105:20239–20244

    Article  Google Scholar 

  • Cragnolini T, Derreumaux P, Pasquali S (2013) Coarse-grained simulations of RNA and DNA duplexes. J Phys Chem B 117:8047–8060

    Article  CAS  PubMed  Google Scholar 

  • Cuervo A, Dans PD, Carrascosa JL, Orozco M, Gomila G, Fumagalli L (2014) Direct measurement of the dielectric polarization properties of DNA. Proc Natl Acad Sci USA 111:3624–3630

    Article  CAS  Google Scholar 

  • Dans PD, Walther J, Gómez H, Orozco M (2016) Multiscale simulation of DNA. Curr Opin Chem Biol 37:29–45

    CAS  Google Scholar 

  • Dans PD, Zeida A, Machado MR, Pantano S (2010) A coarse grained model for atomic-detailed DNA simulations with explicit electrostatics. J Chem Theory Comput 6:1711–1725

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Buscalioni R, Kremer K, Praprotnik M (2008) Concurrent triple-scale simulation of molecular liquids. J Chem Phys 128:114110

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Buscalioni R, Kremer K, Praprotnik M (2009) Coupling atomistic and continuum hydrodynamics through a mesoscopic model: application to liquid water. J Chem Phys 131:244107

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Buscalioni R, Sablić J, Praprotnik M (2015) Open boundary molecular dynamics. Eur Phys J Spec Top 224:2331–2349

    Article  CAS  Google Scholar 

  • Delgado-Buscalioni R, Sablić J, Praprotnik M (2015) Reply to comment by R. Klein on open boundary molecular dynamics. Eur Phys J Spec Top 224:2511–2513

    Article  Google Scholar 

  • Delle Site L (2016) Formulation of Liouville’s theorem for grand ensemble molecular simulations. Phys Rev E 93:022130

    Article  PubMed  CAS  Google Scholar 

  • Delle Site L, Abrams CF, Alavi A, Kremer K (2002) Polymers near metal surfaces: selective adsorption and global conformations. Phys Rev Lett 89:156103

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee M, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  PubMed  Google Scholar 

  • Español P, Delgado-Buscalioni R, Everaers R, Potestio R, Donadio D, Kremer K (2015) Statistical mechanics of Hamiltonian adaptive resolution simulations. J Chem Phys 142:064115

    Article  PubMed  CAS  Google Scholar 

  • Fabritiis GD, Delgado-Buscalioni R, Coveney PV (2006) Multiscale modeling of liquids with molecular specificity. Phys Rev Lett 97:134501

    Article  PubMed  CAS  Google Scholar 

  • Fedosov DA, Karniadakis GE (2009) Triple-decker: interfacing atomistic–mesoscopic–continuum flow regimes. J Comput Phys 228:1157–1171

    Article  Google Scholar 

  • Fogarty AC, Potestio R, Kremer K (2015) Adaptive resolution simulation of a biomolecule and its hydration shell: structural and dynamical properties. J Chem Phys 142:195101

    Article  PubMed  CAS  Google Scholar 

  • Fogarty AC, Potestio R, Kremer K (2016) A multi-resolution model to capture both global fluctuations of an enzyme and molecular recognition in the ligand-binding site. Proteins Struct Funct Bioinform 84:1902–1913

    Article  CAS  Google Scholar 

  • Foley T, Shell MS, Noid WG (2015) The impact of resolution upon entropy and information in coarse-grained models. J Chem Phys 143:243104

    Article  PubMed  CAS  Google Scholar 

  • Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego

    Google Scholar 

  • Fritsch S, Poblete S, Junghans C, Ciccotti G, Delle Site L, Kremer K (2012) Adaptive resolution molecular dynamics simulation through coupling to an internal particle reservoir. Phys Rev Lett 108:170602

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmans M, Sanders BP, Marrink SJ, de Vries AH (2010) Effects of bundling on the properties of the SPC water model. Theor Chem Acc 125:335–344

    Article  CAS  Google Scholar 

  • Gavryushov S (2008) Electrostatics of B-DNA in NaCl and CaCl\(_2\) solutions: ion size, interionic correlation, and solvent dielectric saturation effects. J Phys Chem B 112:8955–8965

    Article  CAS  PubMed  Google Scholar 

  • Goga N, Costache S, Marrink SJ (2009) A multiscalling constant lambda molecular dynamic gromacs implementation. Mater Plast 46:53–57

    CAS  Google Scholar 

  • Gonzales HC, Darré L, Pantano S (2013) Transferable mixing of atomistic and coarse-grain water models. J Phys Chem B 117:14438–14448

    Article  CAS  Google Scholar 

  • Gopal S, Mukherjee S, Cheng YM, Feig M (2010) PRIMO/PRIMONA: a coarse-grained model for proteins and nucleic acids that preserves near-atomistic accuracy. Proteins Struct Funct Bioinform 78:1266–1281

    Article  CAS  Google Scholar 

  • Gopal SM, Kuhn AB, Schäfer LV (2015) Systematic evaluation of bundled SPC water for biomolecular simulations. Phys Chem Chem Phys 17:8393–8406

    Article  CAS  PubMed  Google Scholar 

  • Halverson JD, Brandes T, Lenz O, Arnold A, Bevc S, Starchenko V, Kremer K, Stuehn T, Reith D (2013) ESPResSo++: a modern multiscale simulation package for soft matter systems. Comput Phys Commun 184:1129–1149

    Article  CAS  Google Scholar 

  • Han W, Schulten K (2012) Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: improved backbone hydration and interactions between charged side chains. J Chem Theory Comput 8:4413–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmandarisab VA, Adhikari NP, van der Vegt NFA, Kremer K (2006) Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations. Macromolecules 39:67086719

    Google Scholar 

  • Harmandarisab VA, Kremer K (2009) Predicting polymer dynamics at multiple length and time scales. Soft Matter 5:3920–3926

    Article  CAS  Google Scholar 

  • Hess B, León S, van der Vegt N, Kremer K (2006) Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-A polycarbonate. Soft Matter 2:409–414

    Article  CAS  Google Scholar 

  • Heyden A, Truhlar DG (2008) Conservative algorithm for an adaptive change of resolution in mixed atomistic/coarse-grained multiscale simulations. J Chem Theory Comput 4:217–221

    Article  CAS  PubMed  Google Scholar 

  • Hinckley DM, Lequieu JP, de Pablo JJ (2014) Coarse-grained modeling of DNA oligomer hybridization: length, sequence, and salt effects. J Chem Phys 141:035102

    Article  PubMed  CAS  Google Scholar 

  • Ingólfsson HI, Lopez CA, Uusitalo JJ, de Jong DH, Gopal S, Periole X, Marrink SJ (2014) The power of coarse-graining in biomolecular simulations. WIREs Comput Mol Sci 4:225–248

    Article  CAS  Google Scholar 

  • Izvekov S, Parrinello M, Burnham CB, Voth GA (2004) Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. J Chem Phys 120:10896–10913

    Article  CAS  PubMed  Google Scholar 

  • Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473

    Article  CAS  PubMed  Google Scholar 

  • Izvekov S, Voth GA (2005) Multiscale coarse graining of liquid-state systems. J Chem Phys 123:134105

    Article  PubMed  CAS  Google Scholar 

  • Izvekov S, Voth GA (2006) Multiscale coarse-graining of mixed phospholipid/cholesterol bilayers. J Chem Theory Comput 2:637648

    Google Scholar 

  • Jedlovszky P, Vincze A, Horvai G (2007) Full description of the orientational statistics of molecules near to interfaces. Water at the interface with CCl4. Phys Chem Chem Phys 6:1874–1879

    Article  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kamerlin SCL, Vicatos S, Dryga A, Warshel A (2011) Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Annu Rev Phys Chem 62:41–64

    Article  CAS  PubMed  Google Scholar 

  • Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  CAS  PubMed  Google Scholar 

  • Knotts TAI, Rathore N, Schwartz DC, de Pablo JJ (2007) A coarse grain model for DNA. J Chem Phys 126:084901

    Article  PubMed  CAS  Google Scholar 

  • Korolev N, Lyubartsev AP, Laaksonen A, Nordenskiöld L (2006) A molecular dynamics simulation study of oriented DNA with polyamine and sodium counterions: diffusion and averaged binding of water and cations. Nucleic Acids Res 31:5971–5981

    Article  Google Scholar 

  • Kranenburg M, Nicolas JP, Smit B (2004) Comparison of mesoscopic phospholipid–water models. Phys Chem Chem Phys 6:4142–4151

    Article  CAS  Google Scholar 

  • Kreis K, Donadio D, Kremer K, Potestio R (2014) A unified framework for force-based and energy-based adaptive resolution simulations. EPL 108:30007

    Article  CAS  Google Scholar 

  • Kreis K, Fogarty A, Kremer K, Potestio R (2015) Advantages and challenges in coupling an ideal gas to atomistic models in adaptive resolution simulations. Eur Phys J Spec Top 224:2289–2304

    Article  CAS  Google Scholar 

  • Kreis K, Potestio R, Kremer K, Fogarty AC (2016) Adaptive resolution simulations with self-adjusting high-resolution regions. J Chem Theory Comput 12:4067–4081

    Article  CAS  PubMed  Google Scholar 

  • Kuhn AB, Gopal SM, Schäfer LV (2015) On using atomistic solvent layers in hybrid all-atom/coarse-grained molecular dynamics simulations. J Chem Theory Comput 11:4460–4472

    Article  CAS  PubMed  Google Scholar 

  • Lamm G, Pack GR (1997) Calculation of dielectric constants near polyelectrolytes in solution. J Phys Chem B 101:959–965

    Article  CAS  Google Scholar 

  • Lu J, Yuqing Qiu Y, Baron R, Molinero V (2014) Coarse-graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to monatomic anisotropic water models using relative entropy minimization. J Chem Theory Comput 10:4104–4120

    Article  CAS  PubMed  Google Scholar 

  • Lyubartsev AP (2005) Multiscale modeling of lipids and lipid bilayers. Eur Biophys J 35:53–61

    Article  CAS  PubMed  Google Scholar 

  • Lyubartsev AP, Laaksonen A (1995) Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E 52:3730–3737

    Article  CAS  Google Scholar 

  • Lyubartsev AP, Naômé A, Vercauteren DP, Laaksonen A (2015) Systematic hierarchical coarse-graining with the inverse Monte Carlo method. J Chem Phys 143:243120

    Article  PubMed  CAS  Google Scholar 

  • Machado MR, Dans PD, Pantano S (2011) A hybrid all-atom/coarse grain model for multiscale simulations of DNA. Phys Chem Chem Phys 13:18134–18144

    Article  CAS  PubMed  Google Scholar 

  • Machado MR, Pantano S (2015) Exploring Lacl–DNA dynamics by multiscale simulations using the SIRAH force field. J Chem Theory Comput 11:5012–5023

    Article  CAS  PubMed  Google Scholar 

  • Maciejczyk M, Spasic A, Liwo A, Scheraga HA (2014) DNA duplex formation with a coarse-grained model. J Chem Theory Comput 10:5020–5035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffeo C, Ngo TTM, Ha T, Aksimentiev A (2014) A coarse-grained model of unstructured single-stranded DNA derived from atomistic simulation and single-molecule experiment. J Chem Theory Comput 10:2891–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The martini force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  PubMed  Google Scholar 

  • Masella M, Borgis D, Cuniasse P (2008) Combining a polarizable force-field and a coarse-grained polarizable solvent model: application to long dynamics simulations of bovine pancreatic trypsin inhibitor. J Comput Chem 29:1707–1724

    Article  CAS  PubMed  Google Scholar 

  • Masella M, Borgis D, Cuniasse P (2011) Combining a polarizable force-field and a coarse-grained polarizable solvent model. II. Accounting for hydrophobic effects. J Comput Chem 32:2664–2678

    Article  CAS  PubMed  Google Scholar 

  • Matysiak S, Clementi C, Praprotnik M, Kremer K, Delle Site L (2008) Modeling diffusive dynamics in adaptive resolution simulation of liquid water. J Chem Phys 128:024503

    Article  PubMed  CAS  Google Scholar 

  • Michel J, Orsi M, Essex JW (2008) Prediction of partition coefficients by multiscale hybrid atomic-level/coarse-grain simulations. J Phys Chem B 112:657–660

    Article  CAS  PubMed  Google Scholar 

  • Mohamed KM, Mohamad AA (2010) A review of the development of hybrid atomistic-continuum methods for dense fluids. Microfluid Nanofluid 8:283–302

    Article  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  PubMed  Google Scholar 

  • Mukherji D, Kremer K (2013) Coil–globule–coil transition of pnipam in aqueous methanol: coupling all-atom simulations to semi-grand canonical coarse-grained reservoir. Macromolecules 46:9158–9163

    Article  CAS  Google Scholar 

  • Mullinax JW, Noid WG (2009) Extended ensemble approach for deriving transferable coarse-grained potentials. J Chem Phys 131:104110

    Article  CAS  Google Scholar 

  • Nagarajan A, Junghans C, Matysiak S (2013) Multiscale simulation of liquid water using a four-to-one mapping for coarse-graining. J Chem Theory Comput 9:5168–5175

    Article  CAS  PubMed  Google Scholar 

  • Neri M, Anselmi C, Cascella M, Maritan A, Carloni P (2005) Coarse-grained model of proteins incorporating atomistic detail of the active site. Phys Rev Lett 95:218102

    Article  PubMed  CAS  Google Scholar 

  • Neumann M (1983) Dipole-moment fluctuation formulas in computer-simulations of polar systems. Mol Phys 50:841–858

    Article  CAS  Google Scholar 

  • Neumann M (1985) The dielectric constant of water. Computer simulations with the MCY potential. J Chem Phys 82:5663–5672

    Article  CAS  Google Scholar 

  • Nielsen SO, Moore PB, Ensing B (2010) Adaptive multiscale molecular dynamics of macromolecular fluids. Phys Rev Lett 105:237802

    Article  PubMed  CAS  Google Scholar 

  • Noid WG (2013) Perspective: Coarse-grained models for biomolecular systems. J Chem Phys 139:090901

    Article  CAS  PubMed  Google Scholar 

  • Orsi M, Ding W, Palaiokostas M (2014) Direct mixing of atomistic solutes and coarse-grained water. J Chem Theory Comput 10:4684–4693

    Article  CAS  PubMed  Google Scholar 

  • Orsi M, Essex JW (2011) The ELBA force field for coarse-grain modeling of lipid membranes. PLoS One 6:e28637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouldridge TE, Louis AA, Doye JPK (2011) Structural, mechanical and thermodynamic properties of a coarse-grained DNA model. J Chem Phys 134:085101

    Article  PubMed  CAS  Google Scholar 

  • Periole X, Marrink SJ (2013) The MARTINI coarse-grained force field. In: Monticelli L, Salonen E (eds) Biomolecular simulations: methods and protocols, methods in molecular biology, vol 924. Springer, New York, pp 533–565

    Chapter  Google Scholar 

  • Peter C, Kremer K (2009) Multiscale simulation of soft matter systems—from the atomistic to the coarse-grained level and back. Soft Matter 5:4357–4366

    Article  CAS  Google Scholar 

  • Peters JH, Klein R, Delle Site L (2016) Simulation of macromolecular liquids with the adaptive resolution molecular dynamics technique. Phys Rev E 94:023309

    Article  CAS  PubMed  Google Scholar 

  • Poblete S, Praprotnik M, Kremer K, Delle Site L (2010) Coupling different levels of resolution in molecular simulations. J Chem Phys 132:114101

    Article  PubMed  CAS  Google Scholar 

  • Poma AB, Delle Site L (2010) Classical to path-integral adaptive resolution in molecular simulation: towards a smooth quantum-classical coupling. Phys Rev Lett 104:250201

    Article  CAS  PubMed  Google Scholar 

  • Poma AB, Delle Site L (2011) Adaptive resolution simulation of liquid para-hydrogen: testing the robustness of the quantum-classical adaptive coupling. Phys Chem Chem Phys 13:10510–10519

    Article  CAS  PubMed  Google Scholar 

  • Potestio R, Español P, Delgado-Buscalioni R, Everaers R, Kremer K, Donadio D (2013) Monte Carlo adaptive resolution simulation of multicomponent molecular liquids. Phys Rev Lett 111:060601

    Article  PubMed  CAS  Google Scholar 

  • Potestio R, Fritsch S, Español P, Delgado-Buscalioni R, Kremer K, Everaers R, Donadio D (2013) Hamiltonian adaptive resolution simulation for molecular liquids. Phys Rev Lett 110:108301

    Article  PubMed  CAS  Google Scholar 

  • Potestio R, Peter C, Kremer K (2014) Computer simulations of soft matter: linking the scales. Entropy 16:4199–4245

    Article  CAS  Google Scholar 

  • Potoyan DA, Savelyev A, Papoian GA (2013) Recent successes in coarse-grained modeling of DNA. WIREs Comput Mol Sci 3:69–83

    Article  CAS  Google Scholar 

  • Praprotnik M, Delle Site L, Kremer K (2005) Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. J Chem Phys 123:224106

    Article  PubMed  CAS  Google Scholar 

  • Praprotnik M, Delle Site L, Kremer K (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu Rev Phys Chem 59:545–571

    Article  CAS  PubMed  Google Scholar 

  • Praprotnik M, Matysiak S, Delle Site L, Kremer K, Clementi C (2007) Adaptive resolution simulation of liquid water. J Phys Condens Matter 19:292201

    Article  CAS  Google Scholar 

  • Praprotnik M, Poblete S, Kremer K (2011) Statistical physics problems in adaptive resolution computer simulations of complex fluids. J Stat Phys 145:946–966

    Article  Google Scholar 

  • Reith D, Pütz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624–1636

    Article  CAS  PubMed  Google Scholar 

  • Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M (2007) Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447:461

    Article  CAS  PubMed  Google Scholar 

  • Riniker S, Eichenberger AP, van Gunsteren WF (2012) Solvating atomic level fine-grained proteins in supra-molecular level coarse-grained water for molecular dynamics simulations. Eur Biophys J 41:647–661

    Article  CAS  PubMed  Google Scholar 

  • Riniker S, Eichenberger AP, van Gunsteren WF (2012) Structural effects of an atomic-level layer of water molecules around proteins solvated in supra-molecular coarse-grained water. J Phys Chem B 116:8873–8879

    Article  CAS  PubMed  Google Scholar 

  • Riniker S, van Gunsteren WF (2011) A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations. J Chem Phys 134:084110

    Article  PubMed  CAS  Google Scholar 

  • Rudzinski JF, Noid WG (2015) Bottom–up coarse-graining of peptide ensembles and helixcoil transitions. J Chem Theory Comput 11:1278–1291

    Article  CAS  PubMed  Google Scholar 

  • Rzepiela AJ, Louhivuori M, Peter C, Marrink SJ (2011) Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys Chem Chem Phys 13:10437–10448

    Article  CAS  PubMed  Google Scholar 

  • Sablić J, Praprotnik M, Delgado-Buscalioni R (2016) Open boundary molecular dynamics of sheared star-polymer melts. Soft Matter 12:2416–2439

    Article  PubMed  CAS  Google Scholar 

  • Savelyev A, Papoian GA (2010) Chemically accurate coarse graining of double-stranded DNA. Proc Natl Acad Sci USA 107:20340–20345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP, Ho CR, Ierardi DJ, Kolossváry I, Klepeis JL, Layman T, McLeavey C, Moraes MA, Mueller R, Priest EC, Shan Y, Spengler J, Theobald M, Towles B, Wang SC (2007) Anton, a special-purpose machine for molecular dynamics simulation. SIGARCH Comput Archit News 35:1–12

    Article  Google Scholar 

  • Shell MS (2008) The relative entropy is fundamental to thermodynamic ensemble optimization. J Chem Phys 129:144108

    Article  PubMed  CAS  Google Scholar 

  • Shelley JC, Shelley MY, Reeder R, Bandyopadhyay S, Klein ML (2001) A coarse grained model for phospholipid simulations. J Phys Chem B 105:4464–4470

    Article  CAS  Google Scholar 

  • Shen L, Hu H (2014) Resolution-adapted all-atomic and coarse-grained model for biomolecular simulations. J Chem Theory Comput 10:2528–2536

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Yang W (2016) Quantum mechanics/molecular mechanics method combined with hybrid all-atom and coarse-grained model: Theory and application on Redox potential calculations. J Chem Theory Comput. doi:10.1021/acs.jctc.5b01107

  • Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048

    Article  CAS  PubMed  Google Scholar 

  • Snodin BEK, Randisi F, Mosayebi M, Sulc P, Schreck JS, Romano F, Ouldridge TE, Tsukanov R, Nir E, Louis AA, Doye JPK (2015) Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J Chem Phys 142:234901

    Article  PubMed  CAS  Google Scholar 

  • Sokkar P, Boulanger E, Thiel W, Sanchez-Garcia E (2015) Hybrid quantum mechanics/molecular mechanics/coarse grained modeling: a triple-resolution approach for biomolecular systems. J Chem Theory Comput 11:1809–1818

    Article  CAS  PubMed  Google Scholar 

  • Sokkar P, Choi SM, Rhee YM (2013) Simple method for simulating the mixture of atomistic and coarse-grained molecular systems. J Chem Theory Comput 9:3728–3739

    Article  CAS  PubMed  Google Scholar 

  • Stanley C, Rau D (2011) Evidence for water structuring forces between surfaces. Curr Opin Colloid Interface Sci 16:551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459

    Article  CAS  Google Scholar 

  • Tschöp W, Kremer K, Hahn O, Batoulis J, Bürger T (1998) Simulation of polymer melts. II. From coarse-grained models back to atomistic description. Acta Polym 49:75–79

    Article  Google Scholar 

  • Tuckerman ME (2010) Statistical mechanics: theory and molecular simulation. Oxford University Press, New York

    Google Scholar 

  • Uusitalo JJ, Ingólfsson HI, Akhshi P, Tieleman DP, Marrink SJ (2015) Martini coarse-grained force field: extension to DNA. J Chem Theory Comput 11:3932–3945

    Article  CAS  PubMed  Google Scholar 

  • Villa E, Balaeff A, Mahadevan L, Schulten K (2004) Multiscale method for simulating protein–DNA complexes. Multiscale Model Simul 2:527–553

    Article  CAS  Google Scholar 

  • Villa E, Balaeff A, Schulten K (2005) Structural dynamics of the lac repressor–DNA complex revelead by a multiscale simulation. Proc Natl Acad Sci USA 102:6783–6788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther JH, Praprotnik M, Kotsalis EM, Koumoutsakos P (2012) Multiscale simulation of water flow pas a C540 fullerene. J Comput Phys 231:2677–2681

    Article  CAS  Google Scholar 

  • Wang H, Agarwal A (2015) Adaptive resolution simulation in equilibrium and beyond. Eur Phys J Spec Top 224:2269–2287

    Article  CAS  Google Scholar 

  • Wang H, Hartmann C, Schütte C, Delle Site L (2013) Grand-canonical-like molecular-dynamics simulations by using an adaptive-resolution technique. Phys Rev X 3:011018

    Google Scholar 

  • Wang ZJ, Deserno M (2010) A systematically coarse-grained solvent-free model for quantitative phospholipid bilayer simulations. J Phys Chem B 114:11207–11220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassenaar TA, Ingólfsson HI, Böckmann RA, Peter Tieleman DP, Marrink SJ (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155

    Article  CAS  PubMed  Google Scholar 

  • Wassenaar TA, Ingólfsson HI, Priess M, Marrink SJ, Schaefer LV (2013) Mixing martini: electrostatic coupling in hybrid atomistic–coarse-grained biomolecular simulations. J Phys Chem B 117:3516–3530

    Article  CAS  PubMed  Google Scholar 

  • Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6:e1000810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young MA, Jayaram B, Beveridge DL (1998) Local dielectric environment of B-DNA in solution: results from a 14 ns molecular dynamics trajectory. J Phys Chem B 102:7666–7669

    Article  CAS  Google Scholar 

  • Zavadlav J (2015) Multiscale simulation of biomolecular systems. PhD thesis, Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana

  • Zavadlav J, Marrink SJ, Praprotnik M (2016) Adaptive resolution simulation of supramolecular water: the concurrent making, breaking, and remaking of water bundles. J Chem Theory Comput 12:4138–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavadlav J, Melo MN, Cunha AV, de Vries AH, Marrink SJ, Praprotnik M (2014) Adaptive resolution simulation of martini solvents. J Chem Theory Comput 10:2591–2598

    Article  CAS  PubMed  Google Scholar 

  • Zavadlav J, Melo MN, Marrink SJ, Praprotnik M (2014) Adaptive resolution simulation of an atomistic protein in martini water. J Chem Phys 140:054114

    Article  PubMed  CAS  Google Scholar 

  • Zavadlav J, Melo MN, Marrink SJ, Praprotnik M (2015) Adaptive resolution simulation of polarizable supramolecular coarse-grained water models. J Chem Phys 142:244118

    Article  PubMed  CAS  Google Scholar 

  • Zavadlav J, Podgornik R, Melo MN, Marrink SJ, Praprotnik M (2016) Adaptive resolution simulation of an atomistic DNA molecule in MARTINI salt solution. Eur Phys J Spec Top 225:1595–1607

    Article  CAS  Google Scholar 

  • Zavadlav J, Podgornik R, Praprotnik M (2015) Adaptive resolution simulation of a DNA molecule in salt solution. J Chem Theory Comput 11:5035–5044

    Article  CAS  PubMed  Google Scholar 

  • Zhou HX (2014) Theoretical frameworks for multiscale modeling and simulation. Curr Opin Struct Biol 25:67–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank S. J. Marrink and M. N. Melo for a fruitful collaboration on coupling atomistic and MARTINI molecular models for biomolecular simulations. We are grateful to C. Junghans and K. Kremer for collaboration on the salt solution. We would also like to thank R. Podgornik for collaborating with us on the DNA simulations and J. Sablić for careful reading of the manuscript. We acknowledge financial support through grants P1-0002 and J1-7135 from the Slovenian Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Praprotnik.

Additional information

Special Issue: Regional Biophysics Conference 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavadlav, J., Bevc, S. & Praprotnik, M. Adaptive resolution simulations of biomolecular systems. Eur Biophys J 46, 821–835 (2017). https://doi.org/10.1007/s00249-017-1248-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-017-1248-0

Keywords

Navigation