Skip to main content

Advertisement

Log in

TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Carbon nanotubes are being considered for the design of drug delivery systems (DDSs) due to their capacity to internalize molecules and control their release. However, for cellular uptake of drugs, this approach requires an active translocation pathway or a channel to transport the drug into the cell. To address this issue, it is suggested to use TRPV1 ion channels as a potential target for drug release by nano-DDSs since these channels are overexpressed in cancer cells and allow the permeation of large cationic molecules. Considering these facts, this work presents three studies using molecular dynamics simulations of a human TRPV1 (hTRPV1) channel built here. The purpose of these simulations is to study the interaction between a single-wall carbon nanotube (SWCNT) and hTRPV1, and the diffusion of doxorubicin (DOX) across hTRPV1 and across a POPC lipid membrane. The first study shows an attractive potential between the SWCNT surface and hTRPV1, tilting the adsorbed SWCNT. The second study shows low diffusion probability of DOX across the open hTRPV1 due to a high free energy barrier. Although, the potential energy between DOX and hTRPV1 reveals an attractive interaction while DOX is inside hTRPV1. These results suggest that if the channel is dilated, then DOX diffusion could occur. The third study shows a lower free energy barrier for DOX across the lipid membrane than for DOX across hTRPV1. Taking into account the results obtained, it is feasible to design novel nano-DDSs based on SWCNTs to accomplish controlled drug release into cells using as translocation pathway, the hTRPV1 ion channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S, Seitz T, Ziegler S, Christmann M, Beech DJ, Waldmann H (2015) (\(-\))-englerin is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angewa Chem Int Ed. 54(12):3787–3791. doi:10.1002/anie.201411511. ISSN 1521–3773

  • Alvarez-Berdugo D, Jimenez M, Clave P (2014) Rofes L (2014) Pharmacodynamics of TRPV1 agonists in a bioassay using human PC-3 cells. Sci World J 184526:6. doi:10.1155/2014/184526

    Google Scholar 

  • Arsawang U, Saengsawang O, Rungrotmongkol T, Sornmee P, Wittayanarakul K, Remsungnen T, Hannongbua S (2011) How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Modell 29(5):591–596. doi:10.1016/j.jmgm.2010.11.002. ISSN 1093–3263.

  • Aydar E, Yeo S, Djamgoz M, Palmer C (2009) Abnormal expression, localization and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: a potential target for breast cancer diagnosis and therapy. Cancer Cell Int 9(1):23. doi:10.1186/1475-2867-9-23. ISSN 1475–2867

  • Banke TG, Chaplan SR, Wickenden AD (2010) Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation. Am J Physiol Cell Physiol 298(6):C1457–C1468. doi:10.1152/ajpcell.00489.2009. ISSN 0363–6143

  • Bartels C, Karplus M (1997) Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformations. J Comput Chem 18(12):1450–1462. doi:10.1002/(SICI)1096-987X(199709)18:12<1450::AID-JCC3>3.0.CO;2-I

    Article  CAS  Google Scholar 

  • Bautista D, Julius D (2008) Fire in the hole: pore dilation of the capsaicin receptor TRPV1. Nat Neurosci 11(5):528–529. doi:10.1038/nn0508-528

    Article  CAS  PubMed  Google Scholar 

  • Bean B, Binshtok A, Woolf C (2010) Methods and compositions for treating cancer and modulating signal transduction and metabolism pathways. US Patent 20100311678 A1

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679. doi:10.1016/j.cbpa.2005.10.005 Biopolymers/Modelsystems. ISSN 1367–5931

  • Bohlen CJ, Priel A, Zhou S, King D, Siemens J, Julius D (2010) A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141(5):834–845. doi:10.1016/j.cell.2010.03.052. ISSN 0092–8674

  • Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361. doi:10.1002/jcc.540110311

    Article  CAS  Google Scholar 

  • Cao, E., Liao, M., Cheng, Y., and Julius, D. (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504(7478):113–118, 12.10.1038/nature12823

  • Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D 1:12–21. doi:10.1107/S0907444909042073

    Article  Google Scholar 

  • Chung M-K, Guler AD, Caterina MJ (2008) TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 11(5):555–564. doi:10.1038/nn.2102

    Article  CAS  PubMed  Google Scholar 

  • Cuenca AG, Jiang H, Hochwald S N, Delano M, Cance WG, Grobmyer SR (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107(3):459–466. doi:10.1002/cncr.22035. ISSN 1097–0142

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  • Eicher T, Cha HJ, Seeger MA, Brandstätter L, El Delik J, Bohnert JA, Kern WV, Verrey F, Grütter MG, Diederichs K, Pos KM (2012) Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Nat Acad Sci 109(15):5687–5692. doi:10.1073/pnas.1114944109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. doi:10.1063/1.470117

    Article  CAS  Google Scholar 

  • Eswar N, Webb B, Marti-Renom M, Madhusudhan M, Eramian D, Shen M, Pieper U, Sali A (2001) Comparative protein structure modeling using Modeller. In: Current protocols in protein science. Wiley, New York. doi:10.1002/0471140864.ps0209s50

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian 03, Revision C.02 (2004) Gaussian Inc. Wallingford, CT 2004

  • Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 108(41):16968–16973. doi:10.1073/pnas.1105270108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidel J, Davis M (2011) Clinical developments in nanotechnology for cancer therapy. Pharm Res 28(2):187–199. doi:10.1007/s11095-010-0178-7. ISSN 0724–8741

  • Hesabi M, Hesabi M (2013) The interaction between carbon nanotube and skin anti-cancer drugs: a DFT and NBO approach. J Nanostructure Chem 3(1):22. doi:10.1186/2193-8865-3-22. ISSN 2008–9244

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) Lincs: a linear constraint solver for molecular simulations. J Comput Chem 18 (12): 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463:: AID-JCC4>3.0.CO;2-H. ISSN 1096–987X

  • Hooft RWW, Eijck BPv, Kroon J (1992) An adaptive umbrella sampling procedure in conformational analysis using molecular dynamics and its application to glycol. J Chem Phys 97(9):6690–6694. doi:10.1063/1.463947. ISSN 0021–9606:1089–7690

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. doi:10.1103/PhysRevA.31.1695

    Article  Google Scholar 

  • Hub JS, de Groot BL, van der Spoel D (2010) g\_wham a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6(12):3713–3720. doi:10.1021/ct100494z

    Article  CAS  Google Scholar 

  • Indran IR, Tufo G, Pervaiz S, Brenner C (2011) Recent, advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta (BBA) Bioenerg 1807(6):735–745. doi:10.1016/j.bbabio.2011.03.010. ISSN 0005–2728

  • Jansson E, Trkulja C, Ahemaiti A, Millingen M, Jeffries GD, Jardemark K, Orwar O (2013) Effect of cholesterol depletion on the pore dilation of TRPV1. Mol Pain 9(1):1. doi:10.1186/1744-8069-9-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RR, Johnson ATC, Klein ML (2008) Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett 8(1):69–75. doi:10.1021/nl071909j

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Madura JD (1983) Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water. J Am Chem Soc 105(6):1407–1413. doi:10.1021/ja00344a001

    Article  CAS  Google Scholar 

  • Jorgensen WL, Tirado Rives J (2005) Potential energy functions for atomic level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA 102(19):6665–6670. doi:10.1073/pnas.0408037102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236. doi:10.1021/ja9621760

    Article  CAS  Google Scholar 

  • Kim MO, Feng X, Feixas F, Zhu W, Lindert S, Bogue S, Sinko W, de Oliveira C, Rao G, Oldfield E, McCammon JA (2015) A molecular dynamics investigation of mycobacterium tuberculosis prenyl synthases: conformational flexibility and implications for computer-aided drug discovery. Chem Biol Drug Design 85(6):756–769. doi:10.1111/cbdd.12463. ISSN 1747–0285

  • Kosztin D, Izrailev S, Schulten K (1999) Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophys J 76(1):188–197. doi:10.1016/S0006-3495(99)77188-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam C-W, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134. doi:10.1093/toxsci/kfg243. ISSN 1096–6080:1096–0929

  • Laskowski RA, Swindells MB (2011) Ligplot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786. doi:10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri M, Vannucchi MG, Spinelli M, Bizzoco E, Beneforti P, Turini D, Faussone-Pellegrini M-S (2005) Transient receptor potential vanilloid type 1 (TRPV1) expression changes from normal urothelium to transitional cell carcinoma of human bladder. Eur Urol 48(4):691–698. doi:10.1016/j.eururo.2005.05.018. ISSN 0302–2838

  • Li H, Wang S, Chuang AY, Cohen BE, Chuang H-H (2011) Activity-dependent targeting of TRPV1 with a pore-permeating capsaicin analog. Proc Natl Acad Sci 108(20):8497–8502. doi:10.1073/pnas.1018550108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindert S, Li MX, Sykes BD, McCammon JA (2015) Computer-aided drug discovery approach finds calcium sensitizer of cardiac troponin. Chem Biol Drug Design 85(2):99–106. doi:10.1111/cbdd.12381. ISSN 1747–0285

  • Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9(4):325–341. doi:10.1586/erm.09.15. ISSN 1473–7159

  • Meng F, Xu W (2012) Drug permeability prediction using PMF method. J Mol Modell 19(3):991–997. doi:10.1007/s00894-012-1655-1. ISSN 1610-2940, 0948-5023

  • Mergler S, Skrzypski M, Sassek M, Pietrzak P, Pucci C, Wiedenmann B, Strowski MZ (2012) Thermo-sensitive transient receptor potential vanilloid channel-1 regulates intracellular calcium and triggers chromogranin a secretion in pancreatic neuroendocrine bon-1 tumor cells. Cell Signal 24(1):233–246. doi:10.1016/j.cellsig.2011.09.005 . ISSN 0898-6568

  • Minati L, Antonini V, Dalla Serra M, Speranza G (2012) Multifunctional branched gold-carbon nanotube hybrid for cell imaging and drug delivery. Langmuir 28(45):15900–15906. doi:10.1021/la303298u

    Article  CAS  PubMed  Google Scholar 

  • Mistretta F, Maria B-N, Lughezzani G, Lista G, Larcher A, Fossati N, Abrate A, Dell’Oglio P, Montorsi F, Guazzoni G (2014) Lazzeri M (2014) Bladder cancer and urothelial impairment: the role of TRPV1 as potential drug target. BioMed Res Int 987149:10. doi:10.1155/2014/987149

    Google Scholar 

  • Miyamoto S, Settle Kollman PA (1992) An analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13(8):952–962. doi:10.1002/jcc.540130805

    Article  CAS  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231. doi:10.1016/j.taap.2005.01.008. ISSN 0041-008X

  • Nanoengineer-1 (2012) Nanoengineer-1. http://sourceforge.net/projects/moleculardynami/files/NanoEngineer/

  • Nieciecka D, Joniec A, Blanchard GJ, Krysinski P (2013) Interactions of doxorubicin with organized interfacial assemblies. 1. electrochemical characterization. Langmuir 29(47):14560–14569. doi:10.1021/la403765w. ISSN 0743-7463

  • Nilius B, Prenen J, Owsianik G (2011) Irritating channels: the case of TRPA1. J Physiol 589(7):1543–1549. doi:10.1113/jphysiol.2010.200717. ISSN 1469-7793

  • Nose S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268. doi:10.1080/00268978400101201

    Article  CAS  Google Scholar 

  • Ouadid-Ahidouch H, Dhennin-Duthille I, Gautier M, Sevestre H, Ahidouch A (2013) TRP channels: diagnostic markers and therapeutic targets for breast cancer? Trends Mol Medi 19(2):117–124. doi:10.1016/j.molmed.2012.11.004

    Article  CAS  Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. doi:10.1063/1.328693

    Article  CAS  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760. doi:10.1038/nnano.2007.387. ISSN 1748-3387

  • Perilla JR, Goh BC, Cassidy CK, Liu B, Bernardi RC, Rudack T, Yu H, Wu Z, Schulten K (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64–74. doi:10.1016/j.sbi.2015.03.007. ISSN 0959-440X

  • Prevarskaya N, Zhang L, Barritt G (2007) TRP channels in cancer. Biochim Biophys Acta BBA Mol Basis Dis 1772(8):937–946. doi:10.1016/j.bbadis.2007.05.006. ISSN 0925-4439

  • Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. doi:10.1093/bioinformatics/btt055

  • Puopolo M, Binshtok AM, Yao G-L, Oh SB, Woolf CJ, Bean BP (2013) Permeation and block of TRPV1 channels by the cationic lidocaine derivative QX-314. J Neurophysiol 109(7):1704–1712. doi:10.1152/jn.00012.2013. ISSN 0022-3077

  • Ribeiro AA, Horta BA, Alencastro RBD (2008) MKTOP: a program for automatic construction of molecular topologies. J Braz Chem Soc 19:1433–1435. doi:10.1590/S0103-50532008000700031. ISSN 0103-5053

  • Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91(1):275–282. doi:10.1016/0010-4655(95)00053-I. ISSN 0010-4655

  • Saikia N, Jha AN, Deka RC (2013) Dynamics of fullerene mediated heat driven release of drug molecules from carbon nanotubes. J Phys Chem Lett 4(23):4126–4132. doi:10.1021/jz402231p

    Article  CAS  Google Scholar 

  • Sánchez MG, Sánchez AM, Collado B, Malagarie-Cazenave S, Olea N, Carmena MJ, Prieto JC, Díaz-Laviada I (2005) Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. Eur J Pharmacol 515(1–3):20–27. doi:10.1016/j.ejphar.2005.04.010. ISSN 0014-2999

  • Santoni G (1871) Farfariello V (2011) TRP channels and cancer: New targets for diagnosis and chemotherapy. Endocr Metab Immune Disord Drug Targets 11(1):54–67. doi:10.2174/187153011794982068. ISSN5303

  • Santoni G, Farfariello V, Amantini C (2011) TRPV channels in tumor growth and progression. In: Islam MS (ed) Transient Receptor Potential Channels, volume 704 of Advances in Experimental Medicine and Biology. Springer, Netherlands, pp 947–967. doi:10.1007/978-94-007-0265-3_49. ISBN 978-94-007-0264-6

  • Schmidt TH, Kandt C (2012) Lambada and inflateGRO2: Efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J Chem Inform Model 52(10):2657–2669. doi:10.1021/ci3000453

    Article  CAS  Google Scholar 

  • Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50. doi:10.1038/nrc3180. ISSN 1474-175X

  • Singharoy A, Polavarapu A, Joshi H, Baik M-H, Ortoleva P (2013) Epitope fluctuations in the human papillomavirus are under dynamic allosteric control: a computational evaluation of a new vaccine design strategy. J Am Chem Soc 135(49):18458–18468. doi:10.1021/ja407489r

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82(2):94–109. doi:10.1016/j.aquatox.2007.02.003. ISSN 0166-445X

  • Stock K, Kumar J, Synowitz M, Petrosino S, Imperatore R, Smith ESJ, Wend P, Purfurst B, Nuber UA, Gurok U, Matyash V, Walzlein J, Chirasani SR, Dittmar G, Cravatt BF, Momma S, Lewin GR, Ligresti A, De Petrocellis L, Cristino L, Di Marzo V, Kettenmann H, Glass R (2012) Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat Med 18(8):1232–1238. doi:10.1038/nm.2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmschneider JP, Ulmschneider MB (2009) United atom lipid parameters for combination with the optimized potentials for liquid simulations all-atom force field. J Chem Theory Comput 5(7):1803–1813. doi:10.1021/ct900086b

    Article  CAS  PubMed  Google Scholar 

  • Vardharajula S, Ali S, Tiwari P, Denis V, Vig K, Eroğlu E (2012) Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine 7:5361–5374. doi:10.2147/IJN.S35832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veldhuis NA, Lew MJ, Abogadie FC, Poole DP, Jennings EA, Ivanusic JJ, Eilers H, Bunnett NW, McIntyre P (2012) N-glycosylation determines ionic permeability and desensitization of the TRPV1 capsaicin receptor. J Biol Chem 287(26):21765–21772. doi:10.1074/jbc.M112.342022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhao X, Sun B, Yu H, Huang X (2012) Molecular dynamics simulation study of the vanillate transport channel of Opdk. Arch Biochem Biophys 524(2):132–139. doi:10.1016/j.abb.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  • Xia R, Dekermendjian K, Lullau E, Dekker N (2011) TRPV1: a therapy target that attracts the pharmaceutical interests. In: Islam MS (ed) Transient Receptor Potential Channels, volume 704 of Advances in Experimental Medicine and Biology. Springer, Netherlands, pp 637–665. doi:10.1007/978-94-007-0265-3_34. ISBN 978-94-007-0264-6

  • Zhang W, Zhang Z (1931) Zhang Y (2011) The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 6(1):555. doi:10.1186/1556-276X-6-555. ISSN-7573

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Velasco-Medina.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega-Guerrero, A., Espinosa-Duran, J.M. & Velasco-Medina, J. TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems. Eur Biophys J 45, 423–433 (2016). https://doi.org/10.1007/s00249-016-1111-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1111-8

Keywords

Navigation